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1. Introduction 

It is apparent that the power system restructuring provides a major forum for the application of 
decomposition techniques to coordinate the optimization of various objectives among self-interested 
entities. These entities include power generators (GENCO), transmission providers (TRANSCO), and 
distribution companies (DISCO). Consider a decomposition example when individual GENCOs optimize 
their annual generating unit maintenance schedule based on their local constraints such as available fuel, 
emission, crew, and seasonal load profile. The GENCO’s optimization intends to maximize the GENCO’s 
payoff in a competitive environment. Individual GENCOs submit their maintenance schedule to the ISO 
which examines the proposed schedule to minimize the loss of load expectation while maintaining the 
transmission security based on the available transfer capacity, and forced and scheduled outages of power 
system components. The ISO could return then proposed schedule to designated GENCOs in case the 
operating constraints would be violated. The ISO’s rejection of the proposed schedule could include a 
suggestion (Benders cut) for revising the proposed maintenance schedule that would satisfy GENCOs’ 
and the ISO’s constraints.     

Earlier in the 1960-1970, many of the decomposition techniques were motivated by inability to solve 
large-scale centralized problems with the available computing power of that time. The dramatic 
improvement in computing technology since then allowed power engineers to solve very large problems 
easily. Consequently, interest in decomposition techniques dropped dramatically. However, now there is 
an increasingly important class of optimization problems in restructured power systems for which 
decomposition techniques are becoming most relevant.  

In principle, one may consider the optimization of a system of independent entities by constructing a 
large-scale mathematical program and solving it centrally (e.g., through the ISO) using currently available 
computing power and solution techniques. In practice, however, this is often impossible. In order to solve 
a problem centrally, one needs the complete information on local objective functions and constraints. As 
these entities are separated geographically and functionally, this information may be unattainable or 
prohibitively expensive to retrieve. More importantly, independent entities may be unwilling to share or 
report on their propriety information as it is not incentive compatible to do so; i.e., these entities may have 
an incentive to misrepresent their true preferences. In order to optimize certain objectives in restructured 
power systems, one must turn to the coordination aspects of decomposition. Specifically, with limited 
information one must coordinate entities to reach an optimal solution. The goal will be to coordinate the 
entities by optimizing a certain objective (such as finding equilibrium resource price) while satisfying 
local and system constraints. 

One of the commonly used decomposition techniques in power systems is Benders decomposition. J. 
F. Benders introduced the Benders decomposition algorithm for solving large-scale mixed-integer 
programming (MIP) problems.  Benders decomposition has been successfully applied to take advantage 
of underlying problem structures for various optimization problems, such as restructured power systems 
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operation and planning, electronic packaging and network design, transportation, logistics, 
manufacturing, military applications, and warfare strategies.  

In applying Benders decomposition, the original problem will be decomposed into a master problem 
and several subproblems. Generally, the master-program is an integer problem and subproblems are the 
linear programs. The lower bound solution of the master problem may involve fewer constraints. The 
subproblems will examine the solution of the master problem to see if the solution satisfies the remaining 
constraints. If the subproblems are feasible, the upper bound solution of the original problem will be 
calculated while forming a new objective function for the further optimization of the master problem 
solution. If any of the subproblems is infeasible, an infeasibility cut representing the least satisfies 
constraint will be introduced to the master problem. Then, a new lower bound solution of the original 
problem will be obtained by re-calculating the master problem with more constraints. The final solution 
based on the Benders decomposition algorithm may require iterations between the master problem and 
subproblems. When the upper bound and the lower bound are sufficiently close, the optimal solution of 
the original problem will be achieved.  

Fig. 1.1 depicts the hierarchy for calculating security-constrained unit commitment (SCUC) which is 
based on the existing set up (GENCOs and TRANSCOs as separate entities) in restructured power 
systems. The hierarchy utilizes a Benders decomposition which decouples the SCUC into a master 
problem (optimal generation scheduling) and network security check subproblems. The output of the 
master problem is the on/off state of units which are examined in the subproblem for satisfying the 
network constraints. The network violations are formulated in the form of Benders cuts which ate are 
added to the optimal generation scheduling formulation for re-calculating the original unit commitment 
solution.  
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Fig. 1.1 ISO and market participants 
 

Other applications of Benders decomposition to security-constrained power systems include: 

• Generating Unit Planning  
• Transmission Planning 
• Optimal Generation Bidding and Valuation  
• Reactive Power Planning 
• Optimal Power Flow  
• Hydro-thermal Scheduling 
• Generation Maintenance Scheduling 
• Transmission Maintenance Scheduling 
• Long-term Fuel Budgeting and Scheduling 
• Long-term Generating Unit Scheduling and Valuation 
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In order to discuss the applications of Benders decomposition to power systems, we review in the 
following the subject of duality in linear programs. 
 
2. Primal and Dual Linear Programs 

 In this section, the relationship between primal and dual problems and the related duality theorems 
are discussed. Every linear program (LP), called the primal problem can be equivalently expressed in 
another LP form called the dual problem. The primal problem can be expressed in matrix notation as 
follows: 

0x
bAx

xcT

≥
≥

=
.. ts

zMinimize
                      Primal                                                        (2.1) 

where  and  are n-vector,  is an m-vector and  is an c x b A m x n matrix. The linear function  is 
called 

xcT

objective function. The linear inequalities are called constraints and they form a feasible region for 
minimizing the objective function. The solution elements of the primal problem in the feasible region is 
written as { }0xb,AxRx n ≥≥∈ . Also, its corresponding dual problem is defined as:

                                                Dual                                                         (2.2) 
0y

cyA

yb
T

T

≥
≤

=

.. ts

zMaximize

The number of inequalities in the primal problem becomes the number of variables in the dual problem. 
Correspondingly, the number of variables in the primal problem becomes the number of inequalities in 
the dual problem. Hence the dual problem differs in dimensions from the primal problem. 
 It is typically easier to solve an LP with fewer constraints. Since the primal problem has m constraints 
while the dual problem has n constraints, this generates the following rule of thumb: Solve the LP 
problem that has the fewer number of constraints. For instance, solve the primal problem if m<n, but 
solve the dual problem if m>n. The relationship between primal and dual problems is listed in Table 2.1. 
 

Table 2.1 
Primal (or Dual) Dual (or Primal) 

Objective zMax  wMin  Objective 
0≥  ≥  
0≤  ≤  

 
Variable (n) 

Unlimited =  

 
Constraints (n) 

≤  0≥  
≥  0≤  

Constraints (m) 

=  Unlimited 

 
Variable (m) 

Right-side vector of constraints Coefficients of variables in objective function 
Coefficients of variables in objective function Right-side vector of constraints 

 
Example 2.1: 
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Primal problem                                                              Dual problem 
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3. Basic Model of Benders Decomposition 

 A mixed-integer program has the following form: 

                                                         P1                                                           (3.1) 

Sy0,x
hFyEx
bAy
ydxc TT

∈≥
≥+
≥

+=
.. ts

zMinimize

where, 

A : m× n matrix,  

E : q× p matrix, 

F : q× n matrix, 
cx, : p vectors, 
dy, :  n integer vector,  

b : m vector,  
h : q vector,  
S : an arbitrary subset of pE  with integral-valued components 

Since x is continuous and y is integer, (P1) is a mixed-integer problem. If y values are fixed, (P1) is linear 
in x.  Hence, (3.1) is written as: 

{ }{ }0xFy,hEx|xcbAyyd TT
Ry

≥−≥+≥
∈

Min Minimize
                                  (3.2) 

where, 
{ }Syb,AyFy,-hEx0xyR ∈≥≥≥=  that such  exists   there                    (3.3) 

So, the original problem can be decoupled into a master problem (MP) and a subproblem (SP). 

We begin with solving the following master problem MP1 (3.4): 

                                      MP1                                 (3.4) 

Sy
bAy

ydT

∈
≥
≥lower

lower

zts

zMinimize

..

We use , instead of , as the objective function. The inner part of minimization (3.2) is a 
subproblem SP1 rewritten as 

z ydT
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Primal subproblem (SP1) 

0x
yFhEx 

xcT

≥
−≥

        
ˆ   s.t.

  Minimize
                                 SP1                                      (3.5) 

Also SP2 is the dual subproblem of SP1 given as  

                                  SP2                       (3.6) 
0u
cuE 

u)yF(h 
T

T

≥
≤

−

                
           s.t.

ˆMaximize

where  is the solution of the master problem.  ŷ

The flowchart for the Benders decomposition is as shown in Figure 4.1. 

4. Solution Steps for the Benders Cut Algorithm 

Step 1. Solve MP1 (3.4) and obtain an initial lower bound solution given as  at y . If MP1 is 
infeasible so will be the original problem P1. If MP1 is unbounded, set 

lowerẑ ˆ
∞=lowerẑ  in (3.4) for an arbitrary 

value of  in S, and go to step 2. ŷ
 
Step 2. Solve SP1 (3.5) or SP2 (3.6). An upper bound solution of the original problem P1, in terms of 
SP2, is for the optimal dual solution . In terms of SP1, 

 is the upper bound solution of the original problem P1 for . 

pTT u)yF(h yd ˆˆˆˆ −+=upperz Pû

xc yd TT ˆˆˆ +=upperz x̂

• If ε≤− lowerupper zz ˆˆ  for P1, then stop the process. Otherwise, generate a new constraint 

 (feasibility cut) for MP2 (3.8) and go to step 3. pTT uFy)(hyd ˆ−+≥lowerz

• If SP2 is unbounded, which means that SP1 is infeasible, then introduce a new cut  

(infeasibility cut) for MP2 (3.8). In this case, we will first calculate  from (3.7) to form the 
infeasibility cut and then go to step 3. We use a new SP1 (3.7), feasibility check subproblem to 
calculate  in SP2.  

( ) 0uFyh rT ≤− ˆ
ru

ru

                                                                                   (3.7) 
0s0,x        

uyFhIsEx 

s1 
r

T

≥≥
→−≥+ ˆ   St.

 Minimize

where 1  is the unit vector. 
• If SP2 is infeasible, the original problem P1 will have either no feasible solution or an unbounded 

solution. Stop the process. 
 
Step 3. Solve MP2 to obtain a new lower bound solution with respect to y  for the original problem 
P1. In the following MP2 formulation, we use either the feasibility cut (second constraint) or the 
infeasibility cut (third constraint) as discussed in Step 2.  

lowerẑ ˆ
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                                         MP2                           (3.8) 

( )
Sy

0uFyh

,uFy)(hydz

bAy

rT

p
i

TT
lower

∈
=≤−

=−+≥

≥

ri

p

lower

ni

,n,i

ts
zMinimize

,,1,

1

..

K

K

• Then go back to step 2 for solving the subproblem SP again.  

• If MP2 is unbounded, specify ∞=lowerẑ with  as an arbitrary element of . Return to step 2. ŷ S

• If MP2 is infeasible, so will be the original problem P1. Stop the process. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

         

  

 

No 

Yes 
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 Figure 4.1: Flowchart of Benders Decomposition 
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Example 4.1 

The original problem is 

{ }4,3,,4,5,0
32..

K−−∈≥
≥+

+

yx
yxtS

yxMin
 

[ ]1=Tc          [ ]1=Td [ ]2=E [ ]1=F [ ]3=h  

Iteration 1: Form MP1. 

{ }4,3,,4,5
..

K−−∈
≥

y
yztS

zMin

lower

lower

 

The lower bound optimal solution of the original problem is 5ˆ −=lowerz  when . 5ˆ −=y

Form the SP1 subproblem. 

0
ˆ32..

≥
−≥

x
yxtS

xMin
 

or, Form the SP2 subproblem. 

0
12..
)ˆ3(

≥
≤

−

u
utS

uyMax
                                                

⇒
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0
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8

≥
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u
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We choose to solve SP2 and get the optimal solution equal to 4 at 
2
1

=u . Thus, the upper bound optimal 

solution of the original problem is 1454ˆˆ −=+−=+= yzupper . We continue with the next iteration 
because . 5ˆ1ˆ −=>−= lowerupper zz

Iteration 2: Form MP2 with a new constraint
2
1*)3( yyz −+≥ . 
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The new lower bound optimal solution of the original problem is 1ˆ −=lowerz for . 5ˆ −=y

Solve SP2. 
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0
12..
)ˆ3(
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u
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uyMax
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0
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8

≥
≤

u
utS
uMax

So, the upper bound optimal solution of the original problem is 1454ˆˆ −=+−=+= yzupper . The process 
has converged because 1ˆˆ −== lowerupper zz . 

5.  Alternative Form of Benders Cuts 

Benders cuts were expressed as  

                            (5.1) 
( ) ri

pi

ni

niz

,,1,

,,1,

K

K

=≤−

=−+≥

0uFyh

uFy)(hyd
rT

pTT

Alternatively, (5.1) could be represented as (5.2) in which the first equation is the feasibility cut and the 
second one is the infeasibility cut. 

ri

pi

niv

niwz

,,1,ˆ)ˆ(

,,1,ˆ)ˆ(

K

K

=≤−−

=−−+≥

0uF)y(yy

uF)y(yyyd
r
i

TT

P
i

TTT

                        (5.2) 

where, 
)ˆ(yw  Optimal solution of SP1 (3.5) 
)ˆ(yv  Optimal solution of the feasibility check subproblem (3.7) 

 The Benders cut  indicates that we decrease the objective value of 

the original problem by updating  from  to a new value. The dual multiplier vector  represents the 

incremental change in the optimal objective. Similarly, the Benders cut  
indicates that we update y  to a new value to eliminate constraint violations in SP1 based on  given in 

the master problem. The dual multiplier vector  represents the incremental change in the total 
violation.  

PTTT uF)y(y)y(yd ˆˆ −++≥ wz

y ŷ Pu

0uF)y(y)y( rTT ≤−+ ˆˆv
ˆ ŷ

ru

Example 5.1 

We use the Form 2 of Benders cuts to solve the following example. 

0,0,
1322
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2121

2121

2121

2121

≥≥
≥+−+
≥−+−
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yy,xx
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In general, since we had, 

Sy0,x
hFyEx

bAy
ydxc TT

∈≥
≥+

≥
+=

.. ts
zMinimize
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Accordingly, for the above example,                                                                          

4]    [1         3]  [1 == TT dc               ⎥
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⎤
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Iteration 1: Solve MP1  
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which results in 0z0,y     0,y lower21 === ˆˆˆ . We use the feasibility check subproblem (3.7) because SP2 
is unbounded at . 0y     0,y 21 == ˆˆ

         s,s,x,x
u                        yysxx         

           u                    yysxxSt.    
             sMin  s

00
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ˆ2ˆ12
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21

≥≥
−+≥++
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The optimal solution is 1.5 and its dual multipliers are 5.0ˆ,0.1ˆ 21 == uu . The Benders cut is 
30)ˆ(*5.0)ˆ(*5.05.1 212211 ≥−⇒≤−+−− yyyyyy at 0y     0,y 21 == ˆˆ . 

Iteration 2: The new master problem MP2 is 

0
3

4

21

21

21

≥
≥−

+≥

y,y          
yy          

yyzS.t.
zMin

lower

lower

 

Hence, the new lower bound optimal solution of the original problem is  for3ˆ =lowerz 0y     ,y 21 == ˆ3ˆ . 
We form the primal subproblem SP1 as 

        x,x
u                        yyxx         

         u                    yyxxSt.    
             xMin  x

0
ˆ3ˆ122
ˆ2ˆ12

3

21

22121

12121

21

≥
−+≥+
+−≥−−

+

 Here SP1 is feasible with an optimal solution equal to 6 and dual multipliers equal to 5.2ˆ,0.2ˆ 21 == uu . 
The feasibility cut is )ˆ(*5.3)ˆ(*5.064 221121 yyyyyyzlower −−−+++≥ . 
 So . Accordingly, the upper bound solution of the original problem is 

. We will continue the process because 
21 5.05.15.4 yyzlower ++≥
9636ˆ4ˆˆ 21 =+=++= yyzupper 3ˆ9ˆ =>= lowerupper zz . 

Iteration 3: Add  to MP2. So, 21 5.05.15.4 yyzlower ++≥
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++≥
+≥
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yyzS.t.

zMin

lower
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Hence, the new lower bound solution of the original problem is 9ˆ =lowerz when . 0y     ,y 21 == ˆ3ˆ
Solve SP1. The optimal solution is 6 and 9636ˆ4ˆˆ 21 =+=++= yyzupper . We terminate the iterative 
optimization process because 9ˆˆ == lowerupper zz .  

6.  Benders Decomposition for Security-Constrained Unit Commitment   (SCUC)  
 In order to apply Benders decomposition to SCUC, we write the SCUC problem as a standard 
Benders formulation.  The startup cost of unit i is expressed as itist α where  is the startup cost and ist itα  
is a binary variable that is equal to 1 if unit i is started up at hour t and is 0 otherwise. The shutdown cost 
is expressed similarly as itisd β where  is the shutdown cost of unit i and isd itβ  is a binary variable that is 
equal to 1 if unit i is shut down at hour t and is 0 otherwise. The production cost is proportional to the unit 
output power which is expressed as where  is the cost coefficient of unit i and  is the generated 
power of unit i at hour t. Thus, the objective of SCUC is written as: 

iti pc ic itp

                                                               (6.1) ∑
=

∑
=

++=
T

t

NG

i
itiitiiti sdstpcZMin

1 1
βα

 A unit that is online can be shut down but not started up. Similarly, a unit that is offline can be started 
up but not shut down. This can be expressed as      

      )1( −−=− tiititit IIβα .                           (6.2) 

where  is a binary variable that is equal to 1 if unit i is online during hour t and is 0 otherwise. itI
 For the first hour, the above constraint becomes 0111 iiii II −=− βα where  is the initial state of 
unit i. Its value is 1 if unit i is online at the initial hour and is 0 otherwise.  The minimum up/down time 
limits of a unit are given as: 

0iI

  
),,2()1(*

)1,,1(*
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min,
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min,
min,

NTTNTttNTI
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t
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+−=≥

∑

∑
−+

α

α

                                                          (6.3) 
),,2()1(*]1[

)1,,1(*]1[
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min,

1

min,
min,

NTTNTttNTI

TNTtTI
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i

NT

t
itit
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i

Tt

t

off
iitit
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i

L

L

+−=+−≥−

+−=≥−

∑

∑
−+

β

β

where  is the minimum up time of unit i and  is the minimum down time of unit i. For 

instance, if  and , Table 6.1 shows the relationship between variables 

on
iT min,

off
iT min,

2min, =on
iT 3min, =off

iT itα , itβ  and 

. itI
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Table 6.1 Relationship among itα , itβ  and  itI
Hours 0 1 2 3 4 5 6 7 8 9 10 

I 0 1 1 1 0 0 0 1 1 0 0 
α - 1 0 0 0 0 0 1 0 0 0 
β - 0 0 0 1 0 0 0 0 1 0 

The additional constraints are given as  
System reserve requirements  

                           (6.4) t
NG

i
titi RDIp +≥∑

=1
max,

where NG is the number of units,  is the demand in hour t, and  is system reserve at hour t.  tD tR

Hourly power demand  

                                        (6.5) ∑
=

=
NG

i
tit Dp

1

Thermal unit capacity constraint 

                                                                                                                          (6.6) itiititi IPpIP max,min, ≤≤

Hourly network constraint     

                                                                                                    (6.7) max,,max, )( kmtkmkm PLfPL ≤≤− pI,
where  is the power flow on the line extending from bus k to bus m and  is the line capacity. kmf max,kmPL

6.1 Solution Procedure  
The detailed SCUC solution procedure is shown in Figure 6.1. 
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SP1: Hourly 
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Infeasibility 
Cut 

 
Figure 6.1 SCUC Algorithm 
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The initial SCUC master problem (MP1) is formulated as 

                                                                                           (6.8) 
∑
=

∑
=

+≥
T

t

NG

i
itiitilower

lower

sdstZ

ZMin

1 1
βα

      S.t.  

            additional constraints (6.2)-(6.4).  

In this case, SP1 consists of the following two processes as shown in Figure 6.1.   

1. The initial solution of  is introduced to the hourly feasibility check subproblem to determine whether 
the initial solution satisfies network constraints. The hourly feasibility subproblem for minimizing load 
curtailments is written as follow:  

itI

                                                                                        (6.9) ∑= n
k

n
t rvMin

 S.t. 

 First Kirchoff’s law - bus power balance 
                                                                                                        (6.10) Dg PrPsf =++

      Second Kirchoff’s law - line power flow  
      )( mkkmkmf θθγ −=                                                     (6.11) 

 
λIPP

λIPP

ming,g

maxg,g

ˆ

ˆ

−≤−

≤
                        (6.12) 

                                     (6.13) max,max, kmkmkm PLfPL ≤≤−

where 
mk,  Bus index 

kr  Curtailment of load k 

kmγ  Susceptance of a line from bus k to bus m 
f  Power flow in vector form 
r  Load curtailment in vector form 
s  Bus-branch incidence matrix 

dP  Bus load in vector form  

gP  Bus power generation in vector form 

g,maxg,min P,P    Lower and upper generation limit in vector form  

If , the corresponding infeasibility cut is generated as 0>n
tv

      0)ˆ()ˆ( min,
1

max, ≤−−−+ ∑
=

n
ititGi

n
it

NG

i

n
ititGi

n
it

n
t IIPIIPv λλ                                                                   (6.14) 

The multiplier  is interpreted as the marginal increase/decrease in unserved energy for a 1 MW 
increase in unit i power generation at hour t.  

n
ibtλ

 
2. If , the hourly optimal operation subproblem is formulated as follows: 0=n

tv

                                                                               (6.15) ∑
=

=
NG

i
itit

n
t pcwMin

1
 S.t. 
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 First Kirchoff’s law — bus power balance  
                                                                                                                    (6.16) Dg PPsf =+

     Second Kirchoff’s law – line power flow  
      )( mkkmkmf θθγ −=                                                   (6.17) 

 
πIPP

πIPP

ming,g

maxg,g

ˆ

ˆ

−≤−

≤
                        (6.18) 

                                     (6.19) max,max, kmkmkm PLfPL ≤≤−

  
So the feasibility cut associated with the nth trial solution is    

      
[ ]∑ ∑

=

∑
=

∑
=

⎭
⎬
⎫

⎩
⎨
⎧ −−−++

+≥

t

NG

i

n
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n
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t
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t
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i
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IIPIIPw

sdstZ

1
min,max,

1 1

)ˆ()ˆ( ππ

βα
                                                       (6.20) 

  
The revised SCUC master problem (MP2) is given below which minimizes the operation cost subject to 
generation constraints as well as feasibility and infeasibility cuts.  

                                                                                                        (6.21) 
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      S.t. 
      Additional constraints (6.2)-(6.4).  
      Feasibility or infeasibility cuts which are given below:     
  If the optimal operation subproblems are feasible then the feasibility cut is  
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             If the optimal operation subproblem is infeasible then the infeasibility cut is: 

 0)ˆ()ˆ( min,
1

max, ≤−−−+ ∑
=

n
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n
it

NG
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n
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n
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n
t IIPIIPv λλ                                                            (6.23) 

            where n is the current number of iteration, and nnnn πλπλ ,,, are multiplier vectors at the 
nth iteration. 

The important feature of the Benders decomposition is the availability of upper and lower bounds to 
the optimal solution at each iteration. These bounds can be used as an effective convergence criterion 
given as  

 ( )
( ) ∆≤+

−
lowerupper

lowerupper
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ZZ2                                                                   (6.24) 
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Example 6.1  

 We use a three-bus system shown in Figure 6.2. The maximum energy not served requirement (ε) is 0 
MW. Generator and line input data are given in Tables 6.2 and 6.3, respectively. Load data are shown in 
Table 6.4. The problem is defined as: The initial state of these two units is OFF. Minimum up/down time 
is one hour. Both reserve requirements and ramping constraints are ignored here. Calculate the optimal 
generation commitment of these two units. 

 

 

 
 

 

 

 

 

Bus1 Bus2

Bus3

L 

G2G1 

Figure 6.2 Three-Bus System Example 

Table 6.2 Generator Data for 3-bus System 
Unit Min Capacity 

(MW) 
Max Capacity 

(MW.) 
Cost Coefficient 

($/MW) 
Startup Cost 

($) 
Shutdown Cost 

($) 
1 10  50 10  300 50 
2 5 20 10  200 0 

Table 6.3 Line Data for 3-bus System 
Line # of lines Capacity/line (MW) 
1-2 1 20 
2-3 1 20 
1-3 1 30 

Table 6.4 Load Data 
Hours 1  2 

Load (MW) 35 45 

The objective function of the original problem is  

22211211

22211211

22211211

*10*10*10*10
*0*0*50*50

*200*200*300*300

pppp

zMin

++++
++++

+++=
ββββ

αααα
 

First, we solve the initial SCUC master problem. 

MP1: SCUC master problem iteration 1 

22211211

22211211

*0*0*50*50
*200*200*300*300

ββββ
αααα

++++
+++=lower

lower

z
zMin
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45*20*50
35*20*50
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Table 6.5 shows unit commitment solution  and the cost. I lowerz

Table 6.5 Unit Commitment and operation cost at iteration 1 
Hours 1 2 Zlower ($) 

Unit 1 1 1 
Unit 2 0 0 

 
300 

 
SP1: Feasibility check subproblem at hours 1-2 iteration 1 
We check the feasibility of operation subproblem at hours 1-2 given the first trial of commitment.  
 
The feasibility check at hour 1 is given as 

l
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The solution of feasibility check is 1520150350 1,231,131,122111 ====== fffppr .  

The feasibility check subproblem at hour 2 of iteration 1 is given as 
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f

The feasibility check solution is 2020200405 2,232,132,122212 ====== fffppr . The 

dual multipliers of the operation sub-problem at hour 2 is . 0100 2211 =−=== lulu λλλλ
 
The optimal operation subproblem at hour 2 is infeasible since 05 ≥=r . The infeasibility cut is as 
follows: 

0)0(*)1(*205
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MP2: SCUC master problem iteration 2 
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Table 6.6 shows the unit commitment solution at iteration 2. 

 
Table 6.6 Unit Commitment and operation cost at iteration 2 

Hours 1 2 Zlower ($) 

Unit 1 1 1 
Unit 2 0 1 

 
500 

 

SP2: Feasibility check subproblem at hours 1- 2 iteration 2 
Check the feasibility at hours 1-2; here 0=r  which means the optimal operation subproblem is feasible at 
hours 1-2.  
 

SP1: Optimal operation subproblem at hours 1- 2 iteration 2 

The optimal operation subproblem at hour 1 of iteration 2 is given as  
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The primal solution of feasibility check subproblem at hour 1 is 035350 21111 === ppw . The dual 

multipliers of the operation subproblem are . 0000 2211 ==== lulu ππππ
 
The optimal operation subproblem at hour 2 of iteration 2 is given as  
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The primal solution of feasibility check subproblem is 540450 22122 === ppw . The dual 

multipliers of the operation subproblem are . 0000 2211 ==== lulu ππππ
 
We consider the feasibility cut for the third iteration because  

5001300450350500500 21 =>=++=++= lowerupper zwwz ,  
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MP2: SCUC master problem iteration 3: 
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Table 6.7 shows the unit commitment solution at iteration 3. 
 

Table 6.7 Unit Commitment and operation cost at iteration 3 
Hours 1 2 Zlower ($) 

Unit 1 1 1 
Unit 2 0 1 

 
1300 

 
It is obvious  in next calculations and the final solution should be . 1300== upperlower zz 1300=z
 
 
7. Generation Resource Planning  
 
 The objective function of the generation resource planning is to minimize the investment and 
operation cost while satisfying the system reliability. The objective function is formulated as follows: 
 

( )[ ] ∑
=

∑
=

∑
=

∑ ∑ − ∗+−=
T

t

B

b

NG

i
ibtGibtbt

T

t

CG

i
tiitit POCDTXXCIYMin

1 1 1
,)1( **                      (7.1) 

where 
i Existing or candidate unit index 
b    Load block index 
t    Planning year index 
B Number of load blocks 
CG  Number of candidate units 
T Planning horizon 
NG Number of committed units 
CIit  Capital investment for candidate unit i in year t 
DTbt Duration of load block b in year t 
OCibt    Operating cost unit i among committed units at load block b in year t  
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Xit State variable associated with candidate unit i in year t; 1: selected, 0: rejected.  )( )1( itti XX ≤−  

( ) 0Xi0 =
PG,ibt Dispatched capacity of committed unit i at load block b in year t 
 
 The first terms of the objective function (7.1) is the construction cost for new generating units. The 
second item is the operation cost.  
 
 The set of planning constraints included in the resource planning problem include: 
Constraints (7.2)-(7.5) represent the availability of capital investment funds in year t, projected resource 
capacity for year t, maximum number of units to be added at a planning year, and projected start of 
construction time, respectively. 

),,2,1()(*
1

)1( TtCIXXCI t
CG

i
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=
−                                                              (7.2) 

),,2,1()(*
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)1( TtUCXXCap t
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i
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−                                             (7.3) 

),,2,1()(
1

)1( TtUNXX t

CG

i
tiit L=≤−∑

=
−                                                                  (7.4) 

),,2,1(),,2,1(0 TtPGiCTtifX iit LL ==<=                                         (7.5) 
where 
Capi     Capacity of unit i 
CIt Capital investment in year t 
CTi       Required construction time for candidate unit i 
UCt Upper limit for generating capacity added in year t 
UNt Upper limit for the # of units added in year t 
  
 Constraints (7.6) represent the system capacity requirement at planning year t. In other words, the 
total installed capacity of the candidate and existing units must meet the forecasted peak load demand and 
reserve capacity based on the system requirements. 

)(),,2,1(

* ,,
11

blockloadpeakbTt

PPXCapCap btRbtD
CG

i
iti

EG

i
i

==

+≥∑+∑
==

L

                                                                          (7.6) 

where  
EG Number of existing units 
PD,bt     Forecasted system load at load block b in year t 
PR,bt Forecasted system reserve at load block b in year t 
 
 Additional constraints for representing a GENCO may also be included. For example, a GENCO 
applies constraint (7.7) for seeking the optimal location of a candidate unit among sites 1 through L:   

L),1,  (CS)(1 L==≤∑
∈

TtX
CSi

it                                                           (7.7) 

where 
CS Set of candidate sites 
  
 Likewise, a GENCO may look for the best mix of new units for supplying the projected load. For 
instance, using constraint (7.8) the resource planner may consider two possible options for adding a 500 
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MW capacity. These options may include a 500 MW unit or five 100 MW units. The following constraint 
(7.8) is used to search the better option among possible alternatives (denoted by A and B alternatives in 
this case): 

),,2,1(
),,2,1(
)(
)(
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21
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nCombinatioBBnBB
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TtXXX
TtXXX
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∈
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L

L

L
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                                                                         (7.8) 

  
 System constraints (7.9)-(7.14) at load block b in planning year t are as follows:  
 
The first Kirchoff’s law — power node balance equations: 

drpsf =++                                                                                                 (7.9) 
 
The second Kirchoff’s law for line flows 

mnnmmn xf /)( δδ −=             (7.10) 
 
Generation limits for existing units, 

max,,min, GiibtGGi PPP ≤≤                                                                                       (7.11) 
 
Generation limits for candidate units,  

itGiibtGitGi XPPXP ** max,,min, ≤≤                                                         (7.12) 
 
Transmission flow limits: 

),(max,max, nmjPLfPL jmnj ∈≤≤−         (7.13) 

 
Reliability requirement: 

bt
ND

k
btkbt rDT ε≤∑

=1
,                                      (7.14) 

 
where 
j Transmission line index 
k Load point index 
m,n      Bus index 
ND  Number of load points 
PGi,min   Lower limit of generation of unit i 
PGi,max  Upper limit of generation of unit i 
PLj,max      Capacity of line j from node m to n 
rk Curtailment of load k 
fmn Flow on line j from node m to node n 
xmn reactance of line j from node m to n 
εbt Acceptable level of curtailment at load block b in year t 
d Node load in vector form  
f Power flow in vector form 
p bus real generation in vector form 
r Curtailment in vector form 
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s Node-branch incidence matrix 
 
 The Benders decomposition is used here in which the problem is decomposed into a master problem 
and two subproblems representing feasibility and optimal operation subproblems. The master, which is a 
mixed integer program (MIP), considers an investment plan for generating units based on the available 
types of units, suitable investment programs, and prospective locations based on the availability of site, 
and so on. 
  Once the candidate units are identified by the master problem, the feasibility subproblem will check 
whether this plan can meet system constraints (7.9)-(7.14). If the curtailment violations persist, the 
subproblem will form the corresponding Benders cut, which will be added to the master problem for 
solving the next iteration of the planning problem. Once the violations are removed, the solution of the 
optimal operation subproblem will measure the change in the total cost resulting from marginal changes 
in the proposed resource planning. The iterative solution will form one or more constraints for the next 
iteration of the optimal operation subproblem by using dual multipliers. The iterative process will 
continue until a converged optimal solution is found. 

 

Solution Procedure 

1. The initial generation resource planning master problem (MP1) is formulated as follow: 

                                                              (7.15) ([∑ ∑ −−≥
T

t

CG

i
tiitit XXCIZ

ZMin

)1(* )]
      Subject to constraints (7.2)-(7.8).  

 The initial plan must satisfy the reliability requirement (7.14) at load block b in planning year t to 
provide a secure supply while minimizing the cost of operation. The nth operation subproblem SP1 
(feasibility check) is feasible if and only if the optimal value of the following subproblem is less than ε 

                                                                                      (7.16) ∑
=

=
ND

k
btkbt

n rDTvMin
1

,

 The objective (7.16) is to mitigate network violations and minimize the load curtailment by applying 
a generation redispatch. In this subproblem, we impose power balance (7.9), DC power flow equation 
(7.10), and generation and line flow limits (7.11-13). Note that the generation limits for candidate units 
can be rewritten as: 

n
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2. If constraint (7.14) is not satisfied, the corresponding infeasibility cut given by (7.17) will be generated 
as follows: 

      bt
n
ititGi

n
ibt

CG

i

n
ititGi

n
ibt

n XXPXXPv ελλ ≤−−−+ ∑
=

)()( min,
1

max,                            (7.17) 

The multiplier n
ibtλ  is interpreted as the marginal decrease in unserved energy for a 1 MW generation 

increase in candidate unit i at load block b in the planning year t and associated with the nth trial plan. 
These n = 1,2,3,…,N-1 Benders cuts from the previous iterations are added to the master problem of 
resource planning to get the nth trial investment plan. The process will be repeated until a feasible plan is 
found for meeting the requirement (7.14) on system reliability.  
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3. If the above subproblem is feasible, then the optimal operation subproblem for every year and load 
block is formulated as follows: 
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=

NG

i
ibtGibtbt

n
bt POCDTwMin

1
,*

  
Subject to the constraints (7.9)-(7.13). Similarly, note that the generation limits for candidate units can be 
rewritten as: 
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So the feasibility cut associated with the nth trial solution is 
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The revised generation resource planning problem (MP2) (7.20) minimizes cost subject to planning 
constraints as well as feasibility and infeasibility cuts from the operation subproblems.  
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S.t. 

Planning constraints (7.2)-(7.8). 

Feasibility and infeasibility cuts from previous iterations 

If all operation subproblems are feasible then the feasibility cut is: 
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If one or more operation subproblems (feasibility check) are infeasible then the infeasibility cuts are: 
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where n is the current number of iterations  

      nnnn πλπλ ,,, are the multiplier vectors at nth  iteration  
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The important feature of the Benders decomposition is the availability of upper and lower bounds 
to the optimal solution at each iteration. These bounds can be used as an effective convergence criterion. 
The convergence criterion is 

  ( )
( ) ∆≤
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Example  

A 3-bus system, shown in Figure 1, is used to illustrate the proposed generation resource planning model. 
Existing and candidate generator, load and line data in per unit are given in Tables 2 through 5. We 
assume the studied planning period only has one-year interval. Loads are assumed constant during the 
period. Two candidate generators at bus 3 can be selected to supply the additional load at bus 2 in 
planning year 1. The maximum energy not served requirement (ε) is 0 p.u. in the planning year 1. Reserve 
requirements are not considered in this example. 

  

 

 

 

 

 

Figure 1 Three-Bus System Example 

 

Table 2 Existing Generator Data for 3-bus System 

Unit Min Capacity 
(p.u.) 

Max Capacity 
(p.u.) 

Cost 
($)/h 

1 0.5  2.5 10 g1
2 0.6  2.0 10 g2

Table 3 Candidate Generator Data for 3-bus System 

Unit Min Capacity 
(p.u.) 

Max Capacity 
(p.u.) 

Cost 
($)/h 

Investment 
Cost/Unit ($) 

3 0.6  3.0 8 g3 50,000 
4 0.6  3.0 10 g4 40,000 

Bus1 Bus2

G1 G2

L1 
L2 

Bus3 

L3
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Table 4 Load Data (MW) 

Planning Year L1  L2 L3 
0 1 1 1 
1 1 3 1 

Table 5 Line Data for 3-bus System 

Line # of lines  Capacity/line (p.u.) 
1-2 1 0.5 
2-3 1 1.0 
1-3 1 0.5 

 

The original objective is 

)1081010(*8760)0(*40000)0(*50000 432143 ggggxxMin ++++−+−  

where  represents the state of the candidate unit 3 and  represents the state of the candidate unit 4. 3x 4x

First, we solve initial generation planning master problem. 

Generation planning master problem iteration 1: 
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The solution is  and 1,0 43 == xx 40000=lowerz .  

Operation subproblem iteration 1: 
We check the feasibility of operation subproblem given the first trial of generation planning schedule. The 
feasibility check is as follows: 
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The primal solution of feasibility check is 0.0=r . This means the trial schedule is feasible. The dual 
multipliers of the operation subproblem is: 

0000 4433 ==== lulu λλλλ  

Operation subproblem iteration 1: 

The feasible subproblem is as follows 
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The primal solution of feasible subproblem is:  
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The dual multipliers of the operation subproblem are: 
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Because , the feasible cut for the second 
iteration is:  
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Generation planning master problem iteration 2: 
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The solution is: 

0,1 43 == xx  and .  440,435=lowerz

Operation subproblem iteration 2: 

Because of  based on the above investment strategy, the trial schedule is feasible. The dual 

multipliers of the operation subproblem is: 

0.0=r

0000 4433 ==== lulu λλλλ  

Operation subproblem iteration 2: 

The feasible subproblem is as follows 
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The primal solution of feasible subproblem is:  

0.15.04722.0
0.05.25278.19722.0200,394

231312

4321
−=−==

=====

fff
ggggw

   

 
The dual multipliers of the operation subproblem is: 

17520)2*8760(000 4433 −=−==== lulu ππππ  
 
Because , the feasible cut for the second 
iteration is:  
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Generation planning master problem iteration 3: 

}1,0{,
0.50.30.30.25.2

)0(*)17520(*6.0200,394)0(*40000)0(*50000
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The solution is: 

0,1 43 == xx  and .  200,444=lowerz

 

Operation subproblem iteration 3: 

Because  based on the above investment strategy, the trial schedule is feasible.  0.0=r

Operation subproblem iteration 3: 

According to calculations, the primal solution of feasible subproblem is:  

0.15.04722.0
0.05.25278.19722.0200,394

231312

4321
−=−==

=====
fff

ggggw
   

Because , the optimal solution is obtained, which 

show that selecting the economical unit 3 can save more money, though it has a higher investment cost 

than the candidate unit 4. 

200,444200,3945000050000 ==+=+= lowerupper zwz

 27



8. TRANSMISSION PLANNING  
 
 The objective function of the transmission planning is to minimize the investment and operation cost 
under steady state while satisfying the system reliability requirement for each scenario ϕ. The objective 
function is formulated as follows: 

( )[ ] ∑
=

∑
=

∑
=

∑
=

∑
=

− ∗+−=
T

t

B

b

NG

i
ibtGibtbt

T

t

CL

j
tjjtjt POCDTXXCIYMin

1 1 1
,

1 1
)1( **                      (8.1) 

where 
i Unit index 
j Candidate line index 
b    Load block index 
t    Planning year index 
B Number of load blocks 
CL  Number of candidate lines 
T Planning horizon 
NG Number of committed units 
CIjt  Capital investment for candidate line j in year t 
DTbt Duration of load block b in year t 
OCibt    Operating cost unit i among committed units at load block b in year t  
Xjt State variable associated with candidate line j in year t; 1: selected, 0: rejected.  

( ). )( )1( itti XX ≤− 0Xi0 =
PG,ibt Dispatched capacity of committed unit i at load block b in year t 
 
 The first terms in the objective function (8.1) is the construction cost for new transmission lines. The 
second item is the operation cost.  
 
 The set of planning constraints included in the transmission planning problem are: 
Constraints (8.2)-(8.5) represent the availability of capital investment funds in year t, projected line 
capacity for year t, maximum number of lines to be added at a planning year, and projected construction 
time, respectively. 

),,2,1()(*
1

)1( TtCIXXCI t
CL

j
tjjtjt L=≤−∑

=
−                                                           (8.2) 

),,2,1()(*
1

)1( TtUCXXCap t

CL

j
tjjtj L=≤−∑

=
−                                                       (8.3) 

),,2,1()(
1

)1( TtUNXX t

CL

j
tjjt L=≤−∑

=
−                                                                          (8.4) 

),,2,1(),,2,1(0 TtNLjCTtifX jjt LL ==<=                                      (8.5) 

where 
Capj     Capacity of line j 
CIt Capital investment in year t 
CTj       Required construction time for candidate line j 
UCt Upper limit for line capacity added in year t 
UNt Upper limit for the # of lines added in year t 
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 Additional constraints for representing a TRANSCO may also be included. For example, a 
TRANSCO applies constraint (8.6) for seeking the optimal location of a candidate line among corridors 1 
through L:   

L),1,  (CS)(1 L==≤∑
∈

TtX
CSj

jt                                                                  (8.6) 

where 
CS Set of candidate line corridors 
  
 Likewise, a TRANSCO may look for the best mix of new lines for transferring the electricity to the 
projected load. For instance, using constraint (8.7) the transmission planner may consider two possible 
options for adding a 200 MW capacity. These options may include a 200 MW line or two 100 MW lines. 
The following constraint (8.7,8.8) is used to search the better option among possible alternatives (denoted 
by A and B alternatives in this case): 

),,2,1(
),,2,1(
)(
)(

1

21

21

11

nCombinatioBBnBB
nCombinatioAAmAA
TtXXX
TtXXX

XX

BnttBtB

AmttAtA

tBtA

∈
∈

====
====

≤+

L

L

L

L

                                                                                             (8.7, 8.8) 

 
  
System constraints (8.9)-(8.15) for each scenario ϕ at load block b in planning year t are as follows:  
 
The first Kirchoff’s law — power node balance equations: 

)(ϕdrpsf =++                                                                                    (8.9) 
 
The second Kirchoff’s law for existing lines 

)(0)( ϕθθγ =−− nmmnmnf           (8.10) 
 
The second Kirchoff’s law for candidate lines 

)(),()1(*)( ϕθθγ nmjXMf jtjnmmnmn ∈−≤−−       (8.11) 

where M is a large positive number.  
 
Transmission flow limits for existing lines: 

)(),(max,max, ϕnmjPLfPL jmnj ∈≤≤−        (8.12) 

 
Transmission flow limits for candidate lines: 

)(),(*max, ϕnmjXPLf jtjmn ∈≤         (8.13) 

 
Generation limits: 

)(max,,min, ϕGiibtGGi PPP ≤≤                                                                                    (8.14) 
 
Reliability requirement: 

)(*
1

, ϕεbt
ND

k
btkbt rDT ≤∑

=
                                    (8.15) 
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where 
k Load point index 
m,n      Bus index 
ND  Number of load points 
PGi,min   Lower limit of generation of unit i 
PGi,max  Upper limit of generation of unit i 
PLmn,max      Capacity of line from node m to node n 
rk Curtailment of load k 
fmn Flow on line j from node m to node n 
γmn Line susceptance in vector form 
εbt Acceptable level of curtailment at load block b in year t 
ϕ Index of scenario (including the steady state and contingencies) 
d Node load in vector form  
f Power flow in vector form 
p Bus real generation in vector form 
r Curtailment in vector form 
s Node-branch incidence matrix 
  
 The Benders decomposition is used here in which the problem is decomposed into a master problem 
and two subproblems representing feasibility and optimal operation subproblems. The master, which is a 
mixed integer program (MIP), considers an investment plan for transmission lines based on the available 
types of lines, suitable investment programs, and prospective locations based on the availability of 
corridor, and so on. 
  Once the candidate lines are identified by the master problem, the feasibility subproblem will check 
whether this plan can meet system constraints (8.9)-(8.15). If the curtailment violations persist, the 
subproblem will form the corresponding Benders cut, which will be added to the master problem for 
solving the next iteration of the planning problem. Once the violations are removed, the solution of the 
optimal operation subproblem will measure the change in the total cost resulting from marginal changes 
in the proposed transmission planning. The iterative solution will form one or more constraints for the 
next iteration of the optimal operation subproblem by using dual multipliers. The iterative process will 
continue until a converged optimal solution is found. 

Solution Procedure 

 The initial transmission planning master problem is formulated as follow: 

( )[ ]∑ ∑ −−≥
T

t

CL

j
tjjtjt XXCIZ

ZMin

)1(*
                                                              (8.16) 

      Subject to constraints (8.2)-(8.8).  

 The initial plan must satisfy the reliability requirement (8.15) for each scenario ϕ at load block b in 
planning year t to provide a secure supply while minimizing the cost of operation. The nth operation 
subproblem is feasible if and only if the optimal value of the following feasibility check subproblem is 
less than ε 

                                                                            (8.17) )(*
1

, ϕ∑
=

=
ND

k
btkbt

n
t rDTvMin

 The objective (8.17) is to mitigate network violations and minimize the load curtailment by applying 
a generation redispatch. In this subproblem, constraints (8.9-8.14) are taken into account. Note that the 
constraints (8.11) and (8.13) corresponding to candidate lines can be rewritten as 
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 If constraint (8.15) is not satisfied, the corresponding infeasibility cut given by (8.18) will be 
generated as follows: 
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These n = 1,2,3,…,N-1 Benders cuts from the previous iterations are added to the master problem of 
transmission planning to get the nth trial investment plan. The process will be repeated until a feasible plan 
is found for meeting the requirement (8.15) on system reliability.  
 If the above subproblem is feasible, then the optimal operation subproblem under the steady state for 
every year and load block is formulated as follows: 
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i
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      Subject to the constraints (8.9)-(8.14). Note that the constraints (8.11) and (8.13) can be rewritten as 
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Therefore, the feasibility cut associated with the nth trial solution is 
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Thus, the revised transmission planning problem MP1 (8.21) minimizes cost subject to planning 
constraints as well as feasibility and infeasibility cuts from the operation subproblems.  

  

      ([∑ ∑ −−≥
T

t

CL

j
tjjtjt XXCIZ )]

ZMin

)1(*
                                                        (8.21) 

S.t. Planning constraints (8.2)-(8.7). 

Feasibility and infeasibility cuts from previous iterations are: 
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If all operation subproblems are feasible then the feasibility cut is: 
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However, if one or more operation subproblem (feasibility check) is infeasible then the infeasibility cuts 
are: 
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where n is the current number of iterations  

      nnnn ππλλ ,,, are the multiplier vectors at nth  iteration  

 The important feature of the Benders decomposition is the availability of upper (Y) and lower bounds 
(Z) to the optimal solution at each iteration. These bounds can be used as an effective convergence 
criterion. The convergence criterion is 
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 The solution framework is shown as follows: 

 

 
Master Problem

Feasibility Check Subproblem Feasibility Check Subproblems 

Plan 

Plan

Infeasibility Cut Infeasibility Cut 

Feasibility Cut

Optimal Operation Subproblem 

 

 

 

 

 

 

 

 

 

 

Figure 1 Solution Framework 
 
Example 1  

A 4-bus system, shown in Figure 2, is used to illustrate the proposed transmission planning model. Bus 1 
is the slack bus. Existing and candidate line, generator, load data are given in Tables 1 through 3. We 
assume the studied planning period only has one-year interval. Loads are assumed constant during the 
period. At least one of the two candidate lines should be built to transfer the electricity to the new load 
bus in the planning year 1. The maximum energy not served requirement (ε) is 0 p.u. in the planning year 
1.  

 

  

 

 

 

 
 
 

 

 

Bus1 

G2

Bus2

L2 

Bus4 

G3

Bus3 

L1 

G1 

Figure 2 Three-Bus System Example 
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Table 1 Existing and candidate line Data for the 4-bus System 

Line  From 
bus 

To 
bus 

Reactance 
(pu) 

Capacity (MW) Investment 
cost ($) 

1 2 4 0.2 100 6,000,000 
2 3 4 0.2 100 5,000,000 
3 1 2 0.1 150 - 
4 2 3 0.2 100 - 
5 1 3 0.1 150 - 

 

Table 2 Generator Data for the 4-bus System 

Unit Min Capacity (MW) Max Capacity  
(MW) 

Cost 
($/MWh) 

1 50 150 10 
2 100 200 8 
3 50 100 10 

 

Table 3 Load Data (MW) 

Planning Year L1 L2 
1 200 200 

 

The original objective is )10810(*8760)0(*000,000,5)0(*000,000,6 32121 gggxxMin +++−+−  

where  represents the state of candidate line 1 extending from 2-4 and  represents the state of 
candidate line 2 extending from 3-4. 

1x 2x

First, we solve the initial transmission planning master problem. 

 

Transmission planning master problem iteration 1: 

}1,0{,
1

)0(*000,000,5)0(*000,000,6..

21

21

21

∈
≥+

−+−≥

xx
xx

xxztS
zMin

lower

lower

 

The solution is:  and 1,0 21 == xx 000,000,5=lowerz .  
 
Operation subproblem iteration 1: 
We check the feasibility of operation subproblem given the first trial of transmission planning schedule. 
Assume M= 1000. The feasibility check is as follows: 
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The primal solutions of feasibility check are 

6578.68,0,100,150,50 3424231312 ====−= fffff 7316.28,15,5,0 4321 −=−=== θθθθ  
100,150,100 321 === ggg  and 0.503422.316578.1821 =+=+= rrr , which means the trial schedule is 

infeasible. The dual multipliers of the operation subproblem are: 

0000
00)1(*87600

2211

2211

====

==−==

ππππ
λλλλ

 

Therefore, the infeasibility cut is given as 
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Transmission planning master problem iteration 2: 
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The solution is:  and 0,1 21 == xx 000,000,6=lowerz .  
 
Operation subproblem iteration 2: 
The feasibility check is as follows: 
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Because  based on the above investment strategy, the trial schedule is feasible.  0.0=r

Operation subproblem iteration 2: 
 
The feasible subproblem is as follows 
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The primal solutions of feasible subproblem are: 
000,536,31=w   

0,100,75,125,25 3424231312 ====−= fffff 5.17,5.12,5.2,0 4321 −=−=== θθθθ  
100,200,100 321 === ggg   

   
The dual multipliers of the operation subproblem is: 
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Because , the feasible cut for 
the second iteration is:  
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Transmission planning master problem iteration 3: 
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The solution is:  and 0,1 21 == xx 000,536,37=lowerz .  
 
Operation subproblem iteration 3: 
Because of  based on the above investment strategy, the trial schedule is feasible.  0.0=r

Operation subproblem iteration 3: 
According to calculations, the primal solution of feasible subproblem is:  

000,536,31=w   
0,100,75,125,25 3424231312 ====−= fffff 5.17,5.12,5.2,0 4321 −=−=== θθθθ  

100,200,100 321 === ggg   

Because , the optimal solution is 
obtained, which show that selecting the line 2-4 can satisfy the system curtailment requirement, though it 
has a higher investment cost than the candidate line 3-4. 

000,536,37000,536,31000,000,6000,000,6 ==+=+= lowerupper zwz

 

MATHLAB FORMULATION: 
 
function [X,FVAL,EXITFLAG,OUTPUT,LAMBDA] = LPModel 
 
f=[0  0  0  0  0  0  0  0  0  0  0  0  1  1]; %% objective 
A=[0  0  0  1  0  0 -5  0  5 0  0  0  0  0  %% line 2-4 
   0  0  0 -1  0  0  5  0 -5 0  0  0  0  0  %% line 2-4 
  ]; 
bT=[1000  1000]; 
b=transpose(bT); 
Aeq=[-1 -1  0  0  0  0  0  0  0  1  0  0  0  0  %% bus 1 
      1  0 -1 -1  0  0  0  0  0  0  1  0  0  0  %% bus 2 
      0  1  1  0 -1  0  0  0  0  0  0  0  1  0  %% bus 3 
      0  0  0  1  1  0  0  0  0  0  0  1  0  1  %% bus 4 
      1  0  0  0  0 -10  10  0  0  0  0  0  0  0  %% line 1-2 
      0  1  0  0  0 -10  0  10  0  0  0  0  0  0  %% line 1-3 
      0  0  1  0  0  0 -5  5  0  0  0  0  0  0  %% line 2-3 
      0  0  0  0  1  0  0 -5  5 0  0  0  0  0  %% line 3-4 
    ]; 
 
beqT=[0  0  200  200  0  0  0  0]; 
beq=transpose(beqT); 
LBT=[-150  -150  -100  0  -100  0  -Inf -Inf -Inf 50  100  50  0  0]; 
%% lower bound 
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LB=transpose(LBT); 
UBT=[150  150  100  0  100  0  Inf  Inf  Inf  150  200  100  Inf  
Inf]; %% upper bound 
UB=transpose(UBT); 
 
[X,FVAL,EXITFLAG,OUTPUT,LAMBDA]=LINPROG(f,A,b,Aeq,beq,LB,UB); %% LP 
function 
 
 
SOLUTION:  
 
%% f, A, b, Aeq, beq, LB and UB matrix for each iteration 
 
%%Feasibility check --- Iteration 1: 
 
f=[0  0  0  0  0  0  0  0  0  0  0  0  1  1]; %% objective for one 
hour 
A=[0  0  0  1  0  0 -5  0  5 0  0  0  0  0  %% line 2-4 
   0  0  0 -1  0  0  5  0 -5 0  0  0  0  0  %% line 2-4 
  ]; 
bT=[1000  1000]; 
b=transpose(bT); 
Aeq=[-1 -1  0  0  0  0  0  0  0  1  0  0  0  0  %% bus 1 
      1  0 -1 -1  0  0  0  0  0  0  1  0  0  0  %% bus 2 
      0  1  1  0 -1  0  0  0  0  0  0  0  1  0  %% bus 3 
      0  0  0  1  1  0  0  0  0  0  0  1  0  1  %% bus 4 
      1  0  0  0  0 -10  10  0  0  0  0  0  0  0  %% line 1-2 
      0  1  0  0  0 -10  0  10  0  0  0  0  0  0  %% line 1-3 
      0  0  1  0  0  0 -5  5  0  0  0  0  0  0  %% line 2-3 
      0  0  0  0  1  0  0 -5  5 0  0  0  0  0  %% line 3-4 
    ]; 
beqT=[0  0  200  200  0  0  0  0]; 
beq=transpose(beqT); 
LBT=[-150  -150  -100  0  -100  0  -Inf -Inf -Inf 50  100  50  0  0]; 
%% lower bound 
LB=transpose(LBT); 
UBT=[150  150  100  0  100  0  Inf  Inf  Inf  150  200  100  Inf  
Inf]; %% upper bound 
UB=transpose(UBT); 
 
%%Feasibility check --- Iteration 2 
 
f=[0  0  0  0  0  0  0  0  0  0  0  0  1  1];  %% objective for one 
hour 
A=[0  0  0  0  1  0  0 -5  5 0  0  0  0  0  %% line 3-4 
   0  0  0  0 -1  0  0  5 -5 0  0  0  0  0  %% line 3-4 
  ]; 
bT=[1000  1000]; 
b=transpose(bT); 
Aeq=[-1 -1  0  0  0  0  0  0  0  1  0  0  0  0  %% bus 1 
      1  0 -1 -1  0  0  0  0  0  0  1  0  0  0  %% bus 2 
      0  1  1  0 -1  0  0  0  0  0  0  0  1  0  %% bus 3 
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      0  0  0  1  1  0  0  0  0  0  0  1  0  1  %% bus 4 
      1  0  0  0  0 -10  10  0  0  0  0  0  0  0  %% line 1-2 
      0  1  0  0  0 -10  0  10  0  0  0  0  0  0  %% line 1-3 
      0  0  1  0  0  0 -5  5  0  0  0  0  0  0  %% line 2-3 
      0  0  0  1  0  0 -5  0  5 0  0  0  0  0  %% line 2-4 
    ]; 
beqT=[0  0  200  200  0  0  0  0]; 
beq=transpose(beqT); 
LBT=[-150  -150  -100  -100  0  0  -Inf -Inf -Inf 50  100  50  0  0];  
%% lower bound 
LB=transpose(LBT); 
UBT=[150  150  100  100  0  0  Inf  Inf  Inf  150  200  100  Inf  
Inf];  %% upper bound 
UB=transpose(UBT); 
 
%%Optimal operation --- Iteration 2 
 
f=[0  0  0  0  0  0  0  0  0  10  8  10];  %% objective for one hour 
A=[0  0  0  0  1  0  0 -5  5 0  0  0 %% line 3-4 
   0  0  0  0 -1  0  0  5 -5 0  0  0 %% line 3-4 
  ]; 
bT=[1000  1000]; 
b=transpose(bT); 
Aeq=[-1 -1  0  0  0  0  0  0  0  1  0  0  %% bus 1 
      1  0 -1 -1  0  0  0  0  0  0  1  0  %% bus 2 
      0  1  1  0 -1  0  0  0  0  0  0  0  %% bus 3 
      0  0  0  1  1  0  0  0  0  0  0  1  %% bus 4 
      1  0  0  0  0 -10  10  0  0  0  0  0  %% line 1-2 
      0  1  0  0  0 -10  0  10  0  0  0  0  %% line 1-3 
      0  0  1  0  0  0 -5  5  0  0  0  0  %% line 2-3 
      0  0  0  1  0  0 -5  0  5 0  0  0  %% line 2-4 
    ]; 
beqT=[0  0  200  200  0  0  0  0]; 
beq=transpose(beqT); 
LBT=[-150  -150  -100  -100  0  0  -Inf -Inf -Inf 50  100  50]; %% 
lower bound 
LB=transpose(LBT); 
UBT=[150  150  100  100  0  0  Inf  Inf  Inf  150  200  100]; %% upper 
bound 
UB=transpose(UBT); 
 
%%Feasibility check --- Iteration 3 
 
f=[0  0  0  0  0  0  0  0  0  0  0  0  1  1];  %% objective for one 
hour 
A=[0  0  0  0  1  0  0 -5  5 0  0  0  0  0  %% line 3-4 
   0  0  0  0 -1  0  0  5 -5 0  0  0  0  0  %% line 3-4 
  ]; 
bT=[1000  1000]; 
b=transpose(bT); 
Aeq=[-1 -1  0  0  0  0  0  0  0  1  0  0  0  0  %% bus 1 
      1  0 -1 -1  0  0  0  0  0  0  1  0  0  0  %% bus 2 
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      0  1  1  0 -1  0  0  0  0  0  0  0  1  0  %% bus 3 
      0  0  0  1  1  0  0  0  0  0  0  1  0  1  %% bus 4 
      1  0  0  0  0 -10  10  0  0  0  0  0  0  0  %% line 1-2 
      0  1  0  0  0 -10  0  10  0  0  0  0  0  0  %% line 1-3 
      0  0  1  0  0  0 -5  5  0  0  0  0  0  0  %% line 2-3 
      0  0  0  1  0  0 -5  0  5 0  0  0  0  0  %% line 2-4 
    ]; 
beqT=[0  0  200  200  0  0  0  0]; 
beq=transpose(beqT); 
LBT=[-150  -150  -100  -100  0  0  -Inf -Inf -Inf 50  100  50  0  0];  
%% lower bound 
LB=transpose(LBT); 
UBT=[150  150  100  100  0  0  Inf  Inf  Inf  150  200  100  Inf  
Inf];  %% upper bound 
UB=transpose(UBT); 
 
%%Optimal operation --- Iteration 3 
 
f=[0  0  0  0  0  0  0  0  0  10  8  10];  %% objective for one hour 
A=[0  0  0  0  1  0  0 -5  5 0  0  0 %% line 3-4 
   0  0  0  0 -1  0  0  5 -5 0  0  0 %% line 3-4 
  ]; 
bT=[1000  1000]; 
b=transpose(bT); 
Aeq=[-1 -1  0  0  0  0  0  0  0  1  0  0  %% bus 1 
      1  0 -1 -1  0  0  0  0  0  0  1  0  %% bus 2 
      0  1  1  0 -1  0  0  0  0  0  0  0  %% bus 3 
      0  0  0  1  1  0  0  0  0  0  0  1  %% bus 4 
      1  0  0  0  0 -10  10  0  0  0  0  0  %% line 1-2 
      0  1  0  0  0 -10  0  10  0  0  0  0  %% line 1-3 
      0  0  1  0  0  0 -5  5  0  0  0  0  %% line 2-3 
      0  0  0  1  0  0 -5  0  5 0  0  0  %% line 2-4 
    ]; 
beqT=[0  0  200  200  0  0  0  0]; 
beq=transpose(beqT); 
LBT=[-150  -150  -100  -100  0  0  -Inf -Inf -Inf 50  100  50]; %% 
lower bound 
LB=transpose(LBT); 
UBT=[150  150  100  100  0  0  Inf  Inf  Inf  150  200  100]; %% upper 
bound 
UB=transpose(UBT); 
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8.1 IMPACT OF CONTINGENCIES ON TRANSMISSION PLANNING: 

If we consider the N-1 contingencies, the solution framework is shown as follows: 

 

 
Master Problem

Feasibility Check Subproblem Feasibility Check Subproblems 

Plan 

Plan

Infeasibility Cut Infeasibility Cut 

Feasibility Cut

Optimal Operation Subproblem 

 

 

 

 

 

 

 

 

 

 

Figure 1 Solution Framework 
Example 2  

A 4-bus system is shown in Figure 2. Bus 1 is the slack bus. Existing and candidate line, generator, load 
data are given in Tables 4 through 6. We assume the studied planning period only has one-year interval. 
Loads are assumed constant during the period. At least one among three candidate lines should be built to 
transfer the electricity to the new load bus in the planning year 1. The maximum energy not served 
requirement (ε) is 0 p.u. under the steady state and any single-line outages (N-1 checking principle) in the 
planning year 1. 

 

  

 

 

 

 
 
 

 

 

Bus1 

G2

Bus2

L2 

Bus4 

G3

Bus3 

L1 

G1 

Figure 2 Three-Bus System Example 
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Table 4 Existing and candidate line Data for the 4-bus System 

Line  From 
bus 

To 
bus 

Reactance 
(pu) 

Capacity (MW) Investment 
cost ($) 

1 2 4 0.2 150 6,000,000 
2 3 4 0.2 150 5,000,000 
3 1 2 0.1 200 - 
4 2 3 0.2 200 - 
5 1 3 0.1 200 - 

 

Table 5 Generator Data for the 4-bus System 

Unit Min Capacity (MW) Max Capacity  
(MW) 

Cost 
($/MWh) 

1 100 200 8 
2 100 200 8 
3 50 100 10 

 

Table 6 Load Data (MW) 

Planning Year L1 L2 
1 200 200 

 

The original objective is )10810(*8760)0(*000,000,5)0(*000,000,6 32121 gggxxMin +++−+−  

where  represents the state of candidate line 2-4 and  represents the state of candidate line 3-4. 1x 2x

First, we solve initial transmission planning master problem. 

Transmission planning master problem iteration 1: 

}1,0{,
1

)0(*000,000,5)0(*000,000,6..

21

21

21

∈
≥+

−+−≥

xx
xx

xxztS
zMin

lower

lower

 

The solution is:  and 1,0 21 == xx 000,000,5=lowerz .  
 
Operation subproblem under the steady state iteration 1: 
We check the feasibility of operation subproblem given the first trial of transmission planning schedule. 
The feasibility check is as follows: 
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Because  based on the above investment strategy, the trial schedule is feasible. 0.0=r
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Operation subproblem under the line 1-2 outage iteration 1: 
The feasibility check is as follows: 
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Because , the trial schedule is feasible.  0.0=r
 
Operation subproblem under the line 1-3 outage iteration 1: 
The feasibility check is as follows: 
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Because , the trial schedule is feasible. 0.0=r
 
Operation subproblem under the line 2-3 outage iteration 1: 
The feasibility check is as follows: 
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Because , the trial schedule is feasible. 0.0=r
 
Operation subproblem under the line 3-4 outage iteration 1: 
The feasibility check is as follows: 
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The primal solutions of feasibility check are 

0,0,75,0.125,0.25 3424231312 ====−= fffff 2010.2,5.12,5.2,0 4321 =−=== θθθθ  
100,100,100 321 === ggg  and 100100021 =+=+= rrr , which means the trial schedule is infeasible for 

the line 3-4 outage. The dual multipliers of the operation subproblem are: 
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Transmission planning master problem iteration 2: 
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The solution is:  and 0,1 21 == xx 000,000,6=lowerz .  
 
Operation subproblem under the steady state iteration 2: 
The feasibility check is as follows: 
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Because  based on the above investment strategy, the trial schedule is feasible.  0.0=r
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Operation subproblem under the line 1-2 outage iteration 2: 
The feasibility check is as follows: 
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Because , the trial schedule is feasible.  0.0=r
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Operation subproblem under the line 1-3 outage iteration 2: 
The feasibility check is as follows: 
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Because , the trial schedule is feasible. 0.0=r
 

 50



Operation subproblem under the line 2-3 outage iteration 2: 
The feasibility check is as follows: 
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Because , the trial schedule is feasible. 0.0=r
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Operation subproblem under the line 2-4 outage iteration 2: 
The feasibility check is as follows: 
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The primal solutions of feasibility check are 

0,0,75,0.125,0.25 3424231312 ====−= fffff 3346.12,5.12,5.2,0 4321 −=−=== θθθθ  
100,100,100 321 === ggg  and 100100021 =+=+= rrr , which means the trial schedule is infeasible for 

the line 2-4 outage. The dual multipliers of the operation subproblem are: 
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Transmission planning master problem iteration 3: 
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The solution is:  and 1,1 21 == xx 000,000,11=lowerz .  
 
Operation subproblems under the steady state and any single-line outage iteration 3: 
According to feasibility checks for the steady and any single-line outage, all . Thus, the trial 
schedule is feasible. 

0.0=r

Operation subproblem under the steady state iteration 3: 
The feasible subproblem is as follows 
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The primal solutions of feasible subproblem are: 
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000,536,31=w   
2666.25,2666.105,0.80,266.145,7334.14 3424231312 ====−= fffff

58.19,5267.14,4733.1,0 4321 −=−=== θθθθ  
4669.69,200,5331.130 321 === ggg   

   
The dual multipliers of the operation subproblem are: 
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Because , the feasible cut 
for the second iteration is:  
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Transmission planning master problem iteration 4: 
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The solution is:  and 1,1 21 == xx 000,536,42=lowerz .  
 
Operation subproblems under the steady state and any single-line outage iteration 4: 
Because all  based on the above investment strategy, the trial schedule is feasible.  0.0=r

Operation subproblem under the steady state iteration 4: 
According to calculations, the primal solution of feasible subproblem is:  

000,536,31=w   
2666.25,2666.105,0.80,266.145,7334.14 3424231312 ====−= fffff

58.19,5267.14,4733.1,0 4321 −=−=== θθθθ  
4669.69,200,5331.130 321 === ggg  

Because , the optimal solution is 
obtained which show that lines 2-4 and 3-4 can satisfy the system curtailment requirement under the 
steady state and any single-line outages. 

000,536,42000,536,31000,000,11000,000,11 ==+=+= lowerupper zwz
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