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1. Introduction

It is apparent that the power system restructuring provides a major forum for the application of
decomposition techniques to coordinate the optimization of various objectives among self-interested
entities. These entities include power generators (GENCO), transmission providers (TRANSCO), and
distribution companies (DISCO). Consider a decomposition example when individual GENCOs optimize
their annual generating unit maintenance schedule based on their local constraints such as available fuel,
emission, crew, and seasonal load profile. The GENCO’s optimization intends to maximize the GENCO’s
payoff in a competitive environment. Individual GENCOs submit their maintenance schedule to the I1SO
which examines the proposed schedule to minimize the loss of load expectation while maintaining the
transmission security based on the available transfer capacity, and forced and scheduled outages of power
system components. The ISO could return then proposed schedule to designated GENCOs in case the
operating constraints would be violated. The 1SO’s rejection of the proposed schedule could include a
suggestion (Benders cut) for revising the proposed maintenance schedule that would satisfy GENCOs’
and the ISO’s constraints.

Earlier in the 1960-1970, many of the decomposition techniques were motivated by inability to solve
large-scale centralized problems with the available computing power of that time. The dramatic
improvement in computing technology since then allowed power engineers to solve very large problems
easily. Consequently, interest in decomposition techniques dropped dramatically. However, now there is
an increasingly important class of optimization problems in restructured power systems for which
decomposition techniques are becoming most relevant.

In principle, one may consider the optimization of a system of independent entities by constructing a
large-scale mathematical program and solving it centrally (e.g., through the 1SO) using currently available
computing power and solution techniques. In practice, however, this is often impossible. In order to solve
a problem centrally, one needs the complete information on local objective functions and constraints. As
these entities are separated geographically and functionally, this information may be unattainable or
prohibitively expensive to retrieve. More importantly, independent entities may be unwilling to share or
report on their propriety information as it is not incentive compatible to do so; i.e., these entities may have
an incentive to misrepresent their true preferences. In order to optimize certain objectives in restructured
power systems, one must turn to the coordination aspects of decomposition. Specifically, with limited
information one must coordinate entities to reach an optimal solution. The goal will be to coordinate the
entities by optimizing a certain objective (such as finding equilibrium resource price) while satisfying
local and system constraints.

One of the commonly used decomposition techniques in power systems is Benders decomposition. J.
F. Benders introduced the Benders decomposition algorithm for solving large-scale mixed-integer
programming (MIP) problems. Benders decomposition has been successfully applied to take advantage
of underlying problem structures for various optimization problems, such as restructured power systems



operation and planning, electronic packaging and network design, transportation, logistics,
manufacturing, military applications, and warfare strategies.

In applying Benders decomposition, the original problem will be decomposed into a master problem
and several subproblems. Generally, the master-program is an integer problem and subproblems are the
linear programs. The lower bound solution of the master problem may involve fewer constraints. The
subproblems will examine the solution of the master problem to see if the solution satisfies the remaining
constraints. If the subproblems are feasible, the upper bound solution of the original problem will be
calculated while forming a new objective function for the further optimization of the master problem
solution. If any of the subproblems is infeasible, an infeasibility cut representing the least satisfies
constraint will be introduced to the master problem. Then, a new lower bound solution of the original
problem will be obtained by re-calculating the master problem with more constraints. The final solution
based on the Benders decomposition algorithm may require iterations between the master problem and
subproblems. When the upper bound and the lower bound are sufficiently close, the optimal solution of
the original problem will be achieved.

Fig. 1.1 depicts the hierarchy for calculating security-constrained unit commitment (SCUC) which is
based on the existing set up (GENCOs and TRANSCOs as separate entities) in restructured power
systems. The hierarchy utilizes a Benders decomposition which decouples the SCUC into a master
problem (optimal generation scheduling) and network security check subproblems. The output of the
master problem is the on/off state of units which are examined in the subproblem for satisfying the
network constraints. The network violations are formulated in the form of Benders cuts which ate are
added to the optimal generation scheduling formulation for re-calculating the original unit commitment
solution.
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! l T i l i
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(Network Security Check)

Fig. 1.1 ISO and market participants

Other applications of Benders decomposition to security-constrained power systems include:

Generating Unit Planning

Transmission Planning

Optimal Generation Bidding and Valuation

Reactive Power Planning

Optimal Power Flow

Hydro-thermal Scheduling

Generation Maintenance Scheduling

Transmission Maintenance Scheduling

Long-term Fuel Budgeting and Scheduling
Long-term Generating Unit Scheduling and Valuation



In order to discuss the applications of Benders decomposition to power systems, we review in the
following the subject of duality in linear programs.

2. Primal and Dual Linear Programs

In this section, the relationship between primal and dual problems and the related duality theorems
are discussed. Every linear program (LP), called the primal problem can be equivalently expressed in
another LP form called the dual problem. The primal problem can be expressed in matrix notation as
follows:

Minimize z =¢Tx
s.t. Ax>b Primal (2.1)

x>0
where ¢ and x are n-vector, b is an m-vector and A is an m x n matrix. The linear function ¢'x is
called objective function. The linear inequalities are called constraints and they form a feasible region for
minimizing the objective function. The solution elements of the primal problem in the feasible region is

written as {x eR" |Ax >b,x> 0}. Also, its corresponding dual problem is defined as:

Maximize z=bTy
s. 1. ATy<ec Dual (2.2)
y=0

The number of inequalities in the primal problem becomes the number of variables in the dual problem.
Correspondingly, the number of variables in the primal problem becomes the number of inequalities in
the dual problem. Hence the dual problem differs in dimensions from the primal problem.

It is typically easier to solve an LP with fewer constraints. Since the primal problem has m constraints
while the dual problem has n constraints, this generates the following rule of thumb: Solve the LP
problem that has the fewer number of constraints. For instance, solve the primal problem if m<n, but
solve the dual problem if m>n. The relationship between primal and dual problems is listed in Table 2.1.

Table 2.1
Primal (or Dual) Dual (or Primal)
Objective Max z Min w Objective
>0 >
Variable (n) <0 < Constraints (n)
Unlimited =
Constraints (m) < >0
> <0 Variable (m)
= Unlimited
Right-side vector of constraints Coefficients of variables in objective function
Coefficients of variables in objective function Right-side vector of constraints

Example 2.1:



Primal problem Dual problem

Max z =5X%; + 4X, + 6X;3 Minw=2y; +3y, —5y3 + Y,
St X +2% =22 St. y;+y,-3y3+y,25
Xq +X3 <3 2y,  +2y3—-y,<4
—3x; + 2%, + X3 <=5 Y2+ Y3 +Y4=6
Xp— Xo+Xgz=1 y1<0,¥,,y3 20, y, unlimited

X; 20, X, <0, x5 unlimited

3. Basic Model of Benders Decomposition
A mixed-integer program has the following form:
Minimize z=c"x+aTy
S. t. Ay=>b
Ex+Fy>h
x>20,yeS

P1 (3.1)

where,
A : mxn matrix,
E : qxp matrix,

F : gxn matrix,
X, ¢ : p vectors,
y,d : ninteger vector,

b : m vector,
h : g vector,
S : an arbitrary subset of EP with integral-valued components

Since x is continuous and y is integer, (P1) is a mixed-integer problem. If y values are fixed, (P1) is linear
in X. Hence, (3.1) is written as:

Minimize d "y|Ay > b + Minic x| Ex>h—Fy, x>0
|ry1;r1111|ze{d /Ay >b + m{c x| Ex Y, X }} 2

where,
R= {y| there exists x >0 such that Ex>h-Fy, Ay >b,y S } (3.3)

So, the original problem can be decoupled into a master problem (MP) and a subproblem (SP).
We begin with solving the following master problem MP1 (3.4):
Minimize z,gyer

St Zigwer 2y
Ay=>b
yeS

MP1 (3.9)

We use z, instead of dTy, as the objective function. The inner part of minimization (3.2) is a
subproblem SP1 rewritten as



Primal subproblem (SP1)
Minimize ¢Tx
st. Ex>h-Fy SP1 (3.5)
x>0

Also SP2 is the dual subproblem of SP1 given as
Maximize (h-Fy)T u
s.t. ETu<e SP2 (3.6)

where y is the solution of the master problem.

The flowchart for the Benders decomposition is as shown in Figure 4.1.

4. Solution Steps for the Benders Cut Algorithm

Step 1. Solve MP1 (3.4) and obtain an initial lower bound solution given as Z,,e, at y. If MP1 is
infeasible so will be the original problem P1. If MP1 is unbounded, set Zy,e, = in (3.4) for an arbitrary
value of y in S, and go to step 2.

Step 2. Solve SP1 (3.5) or SP2 (3.6). An upper bound solution of the original problem P1, in terms of

SP2, is Zyper =d'y+(h—Fy)"a4P for the optimal dual solution °. In terms of SPI,
Zypper =dTy +¢Tx is the upper bound solution of the original problem P1 for X.
o If |Zypper = Ziower|< € for P1, then stop the process. Otherwise, generate a new constraint

Ziower = Ay +(h—Fy)TuP (feasibility cut) for MP2 (3.8) and go to step 3.

e If SP2 is unbounded, which means that SP1 is infeasible, then introduce a new cut (h—Fy)"a" <0

(infeasibility cut) for MP2 (3.8). In this case, we will first calculate u" from (3.7) to form the
infeasibility cut and then go to step 3. We use a new SP1 (3.7), feasibility check subproblem to

calculate u" in SP2.

Minimize 17s
St. Ex+Is>h-Fy - u' (3.7)
x>0,s>0

where 1 is the unit vector.

e If SP2 is infeasible, the original problem P1 will have either no feasible solution or an unbounded
solution. Stop the process.

Step 3. Solve MP2 to obtain a new lower bound solution Z,,,,, With respect to y for the original problem

P1. In the following MP2 formulation, we use either the feasibility cut (second constraint) or the
infeasibility cut (third constraint) as discussed in Step 2.



Minimize z;qer

s. L. Ay =>b
Zyower ZdTy+(h_FY)Tu?9i =1,... Ny MP2 (3.8)
(h—Fy)Tuir <0,i=1...,n,
yeS

e Then go back to step 2 for solving the subproblem SP again.

e If MP2 is unbounded, specify Z,,,er = with y as an arbitrary element of S . Return to step 2.

e If MP2 is infeasible, so will be the original problem P1. Stop the process.

Start with
<4 theinitial master problem MP1

Infeasible solution
(Stop)

L Solve master problem MP2

> with more constraints

v

Solve SP2 with three possible

results given below <+
A 4
Feasible solution
+ Unbounded solution

Infeasible solution

Infeasible or Unbounded for P1

Yes

» Optimal
Solution

Converged

v

Add a new Benders cut to
master MP2

(h—Fy)Tar <o

Add a new Benders cut to master MP2

@ Ziower 2 dTy +(h- FY)Tﬁp

Figure 4.1: Flowchart of Benders Decomposition




Example 4.1

The original problem is

Min x+y

St. 2x+y=>3
x>0,ye{-5-4,..34}

¢"=[1] d"=[1] E=[2] F=[] n=[3]

Iteration 1: Form MP1.
Min ZIower

St. Ziower 2 Y
ye{-5-4,....34

The lower bound optimal solution of the original problem is 7, =—5 when y =-5.

Form the SP1 subproblem.
Min x

St. 2x>3-Y
x>0

or, Form the SP2 subproblem.

Max (3—y)u _ Max 8u
St 2u<1 y= St 2u<1
=
u=>0 u=>0

We choose to solve SP2 and get the optimal solution equal to 4 at u =%. Thus, the upper bound optimal

solution of the original problem is Z =y+4=-5+4=-1. We continue with the next iteration

upper

because Z =—=1>Z1gper =—5.

upper

Iteration 2: Form MP2 with a new constraintz > y + (3— y)*l.

2
Min Ziower Min Ziower
St Ziower = Y St Ziower = Y
1 = 3 1
Ziower 2 y+(3_Y)*E Z\ower ZE"’EV
ye{-5-4,.. 34} ye{-5-4,.. 34}

The new lower bound optimal solution of the original problem is 7y, =—1fory=-5.

Solve SP2.



Max (3 - y)u Max 8u
St. 2u<l St. 2u<l
ux=0 ux=0

<>

Il
U |

ol

So, the upper bound optimal solution of the original problem is Z =y+4=-5+4=-1. The process

upper
has converged because Z,yper = Zjoer = 1.

5. Alternative Form of Benders Cuts

Benders cuts were expressed as
z2d"y+(h-Fy)"up,i=1..,n, 51)
(h—Fy)Tuir <0,i=1...,n,

Alternatively, (5.1) could be represented as (5.2) in which the first equation is the feasibility cut and the
second one is the infeasibility cut.
z2d"y +w(@); - (-9 "Flufi=1...n, 52)
V@) — -9 Ful <0,i=1,...,n,
where,
w(y) Optimal solution of SP1 (3.5)

v(y) Optimal solution of the feasibility check subproblem (3.7)

TFTu® indicates that we decrease the objective value of

P

The Benders cut z>d y + w(¥) + (y - )
the original problem by updating y from y to a new value. The dual multiplier vector u" represents the

incremental change in the optimal objective. Similarly, the Benders cut v(§)+(y—3%)TFTu" <0
indicates that we update y to a new value to eliminate constraint violations in SP1 based on y given in

the master problem. The dual multiplier vector u" represents the incremental change in the total
violation.

Example 5.1

We use the Form 2 of Benders cuts to solve the following example.
Min X+ 3X, +y; +4Y,
St 2% =Xy +Yy; =2y, 21

2%y +2X, =y +3y, 21

X1, X2 20,1, Y, 20

In general, since we had,

Minimize z=c x+d "y

s. t. Ay=>b
Ex+Fy>h
x>0,yeS



Accordingly, for the above example,

T_ny atep 4 E=| 2 | F=|t 77w
€= B 2 2 -1 3 1

Iteration 1: Solve MP1

Min Ziower
St. Ziower 2 Y1 + 4y2
y120,y, 20

which results in y; =0, ¥, =0, Z;,uer =0. We use the feasibility check subproblem (3.7) because SP2
is unbounded at y; =0, Yy, =0.

Min s; +5,
St. —2X,—Xy+5; >1-y, +2Y, Uy
2Xq + 2X, +5,21+y; -3y, Up

X1, X5 20,81,5, >0

The optimal solution is 1.5 and its dual multipliers ared; =1.0,4, =0.5. The Benders cut is
15-05%(y; - ¥1)+0.5*(y, - ¥,)<0=y, -y, >3at §; =0, y,=0.

Iteration 2: The new master problem MP2 is
Min Zlower
St Zlower 2 Y1 + 4y2

y1—Y2 =3

Y1.Y2 20

Hence, the new lower bound optimal solution of the original problem is Z,,, =3 fory, =3, ¥, =0.
We form the primal subproblem SP1 as

Min x; + 3%,
St. —2x—X, 21—y, +2Y, Uy
2Xq + 2%, 21+ ¥, —3Y, U,
X1, X5 20

Here SP1 is feasible with an optimal solution equal to 6 and dual multipliers equal to G, =2.0,0, =2.5.
The feasibility cutis zger =Y, +4Y, +6+0.5%(y; — V1) —3.5*(y, — ¥,).
SO Zjgwer 24.5+1.5y; +0.5y,. Accordingly, the upper bound solution of the original problem is

Zypper = Y1 +4¥, +6=3+6=9. We will continue the process because Zper =9 > Zjgyer =3

Iteration 3: Add 25, >4.5+1.5y; + 0.5y, to MP2. So,



Min Zjower
St. Ziower 2 Y1+ 4y2
Zjower = 4.5+1.5y; +0.5y,

Y1 — Y, 23
Y1, Y2 20

Hence, the new lower bound solution of the original problem is Z,,,, =9when y; =3, §, =0.
Solve SP1. The optimal solution is 6 and Z,,5er =Y, +4y, +6=3+6=9. We terminate the iterative

optimization process because Z,pner = Zjoper =9-

6. Benders Decomposition for Security-Constrained Unit Commitment (SCUC)

In order to apply Benders decomposition to SCUC, we write the SCUC problem as a standard
Benders formulation. The startup cost of unit i is expressed as st;a;; Where st; is the startup cost and o
is a binary variable that is equal to 1 if unit i is started up at hour t and is 0 otherwise. The shutdown cost
is expressed similarly as sd; 8;; where sd; is the shutdown cost of unit i and f;; is a binary variable that is
equal to 1 if unit i is shut down at hour t and is O otherwise. The production cost is proportional to the unit
output power which is expressed as c; p;; where ¢; is the cost coefficient of unitiand p;, is the generated
power of unit i at hour t. Thus, the objective of SCUC is written as:

) T NG
MinZ = > X Ci pit + Stiait + Sdiﬂit (61)
=li=1

A unit that is online can be shut down but not started up. Similarly, a unit that is offline can be started
up but not shut down. This can be expressed as

ait = Bir = liy — li) - (6.2)

where |I;; is a binary variable that is equal to 1 if unit i is online during hour t and is 0 otherwise.

For the first hour, the above constraint becomes «;; — Si; = 11 — lig Where ;4 is the initial state of

unit i. Its value is 1 if unit i is online at the initial hour and is O otherwise. The minimum up/down time
limits of a unit are given as:

on
t'*'Ti,min -1

lie > o *TS0in =L NT =T, +1)
t

N > ay *(NT —t+1) (t=NT =T +2,.--,NT)
t

i,min

4ol g
=112 By *TO

i,min

ff
(t=1-,NT -T, 0 +1)

6.3)
N L=1,02 8, *(NT =t +1) (t=NT -T°" 12... NT)
t

i,min

where T;%%: is the minimum up time of unit i and TOM is the minimum down time of unit i. For

i,min i,min

instance, if T, =2 and ToT =3, Table 6.1 shows the relationship between variables ai, Py and

i,min

lit -

10



Table 6.1 Relationship among ¢;;, Si; and 1

Hours 0 1 2 3 4 5 6 7 8 9 10
| 0 1 1 1 0 0 0 1 1 0 0
a 1 0 0 0 0 0 1 0 0 0
B - 0 0 0 1 0 0 0 0 1 0
The additional constraints are given as
System reserve requirements
NG
El Pi.maxlit = Dt + Ry (6.4)

where NG is the number of units, D, is the demand in hour t, and R, is System reserve at hour t.

Hourly power demand

:\Izel Pit = Dy (6.5)
Thermal unit capacity constraint
Piminlit < Pit < Pi max it (6.6)
Hourly network constraint
= Plymmax < fim,t (I,P) < Plym max (6.7)

where f,., is the power flow on the line extending from bus k to bus mand PLy, nax IS the line capacity.

6.1 Solution Procedure

The detailed SCUC solution procedure is shown in Figure 6.1.

Feasibility
MP1: < cut
Master Problem
Infeasibility (UC) Infeasibility
Cut Cut

SP1: Hourly
Feasibility
Check

SP1: Hourly
Feasibility
Check

v A 4
SP1:Hourly |  ___ . ____ SP1: Hourly
Optimal Operation Optimal Operation

Figure 6.1 SCUC Algorithm
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The initial SCUC master problem (MP1) is formulated as

Min ZIower

T NG (6.8)
Ziower 2 2 stiai +5d; Byt

St
additional constraints (6.2)-(6.4).
In this case, SP1 consists of the following two processes as shown in Figure 6.1.

1. The initial solution of 1;; is introduced to the hourly feasibility check subproblem to determine whether

the initial solution satisfies network constraints. The hourly feasibility subproblem for minimizing load
curtailments is written as follow:

Min v{=xr] (6.9)
St
First Kirchoff’s law - bus power balance
sf+P, +r="Pp (6.10)
Second Kirchoff’s law - line power flow
fim = 7ikm Gk — ) (6.11)
P, <P, .I )
&7 e (6.12)
_Pg < _Pg,minI )_"
_PLkm,max < fkm < PI-km,max (6-13)
where
k,m Busindex
e Curtailment of load k
Ykm  Susceptance of a line from bus k to bus m
f Power flow in vector form
r Load curtailment in vector form
s Bus-branch incidence matrix
Py Bus load in vector form
P, Bus power generation in vector form
Py mins Pgmax  LOWer and upper generation limit in vector form

If v{' >0, the corresponding infeasibility cut is generated as
VY AP (L = 10) = A"Pai o (I —10) <0 (6.14)
t i it " Gi,max \"it it Zit " Gi,min \Tit it/ = :

The multiplier Ay, is interpreted as the marginal increase/decrease in unserved energy for a 1 MW
increase in unit i power generation at hour t.

2. If v{ =0, the hourly optimal operation subproblem is formulated as follows:
NG
Min  w = ¢; pit (6.15)
i=1
S.t.

12



First Kirchoff’s law — bus power balance

sf+P, =Py (6.16)
Second Kirchoff’s law — line power flow
fim = 7km (6 — ) (6.17)
P, <P, .1 7

g = pma 8 (6.18)
_Pg < _Pg,minl T
_PLkm,max < fkm < I:)I-km,max (619)

So the feasibility cut associated with the n" trial solution is
T NG
ZIower 25151 S'[iO‘it + SdiIBit

NG A ) (6.20)
+%{th + El [ﬁi? Pai max (it = 1it) = Z it Paimin (1t — IiT)]}

The revised SCUC master problem (MP2) is given below which minimizes the operation cost subject to
generation constraints as well as feasibility and infeasibility cuts.

Min ZIower
T NG (6.21)
ZIower ZE‘“; stiO[it + Sdiﬂit
St
Additional constraints (6.2)-(6.4).
Feasibility or infeasibility cuts which are given below:
If the optimal operation subproblems are feasible then the feasibility cut is
T NG
ZIower 251;1 S'[iO‘it + SdiIBit
e ) ) (6.22)
+ %{th +Z [ﬁi? Pai,max (it = 1it) = Z it Pai,min (it — IiT)]}
If the optimal operation subproblem is infeasible then the infeasibility cut is:
NG — ~ R
Vi + z Zit Paimax (it = 1it) = 21t Pai,min (1t = 1it) <0 (6.23)

where n is the current number of iteration, and A",z", A", z" are multiplier vectors at the
n™ iteration

The important feature of the Benders decomposition is the availability of upper and lower bounds to

the optimal solution at each iteration. These bounds can be used as an effective convergence criterion
given as

2(Zupper - ZIowey <
<A 6.24
(ZUpper + ZIower) ( )
T NG T NG T
where Zupper =3 X Ci Pit + Stiait + Sdiﬂit =X (Stiait + Sdiﬂit) + ZWt (625)
t=1i=1 t=1i=1 t=1

13



Example 6.1

We use a three-bus system shown in Figure 6.2. The maximum energy not served requirement (g) is 0
MW. Generator and line input data are given in Tables 6.2 and 6.3, respectively. Load data are shown in
Table 6.4. The problem is defined as: The initial state of these two units is OFF. Minimum up/down time
is one hour. Both reserve requirements and ramping constraints are ignored here. Calculate the optimal
generation commitment of these two units.

Busl Bus2

@ @

Bus3

Figure 6.2 Three-Bus System Example

Table 6.2 Generator Data for 3-bus System
Unit  Min Capacity =~ Max Capacity ~ Cost Coefficient  Startup Cost  Shutdown Cost

(MW) (MW.) ($/MW) (%) (%)
1 10 50 10 300 50
2 5 20 10 200 0

Table 6.3 Line Data for 3-bus System
Line #oflines  Capacity/line (MW)

1-2 1 20
2-3 1 20
1-3 1 30

Table 6.4 Load Data

Hours 1 2
Load (MW) 35 45

The objective function of the original problem is
Min z =300* a1 +300* 21, +200* 25, +200* 2,
+50% By +50% B15 + 0% By +0* S,
+10* py; +10* p;, +10* p,; +10* p,,
First, we solve the initial SCUC master problem.
MP1: SCUC master problem iteration 1

Min Zjower
Ziower =300* a3 +300* gy +200* arpy + 200*
+50% B3 +50% 15 + 0% fo1 + 07 Sy,

14



St

oy = Pr1=111-0
a1y — P2 =l — g
ay =P =11-0

Ay =P =1y -1y

50% 1y, +20* 1, >35
50% 1,, +20* 1, > 45

Table 6.5 shows unit commitment solution I and the z;,,,, COSt.

SP1: Feasibility check subproblem at hours 1-2 iteration 1

Table 6.5 Unit Commitment and operation cost at iteration 1

Hours 1 2 Ziower (8)
Unit 1 1 1
Unit 2 0 0 300

We check the feasibility of operation subproblem at hours 1-2 given the first trial of commitment.

The feasibility check at hour 1 is given as

Minr

St.—fp1 = fig1+ P11 =0

— fo31+ f11 + P2 =0

fl3,l + f23‘1 +r= 35

~

P11 <50* 1y M
— Py <-10% 1y A
Py <20% 0 2
— Py €-5% 1y ye

~20< f15, <20
~20< fi3, <20
~30< fpe; <30

The solution of feasibility checkis r=0 p;; =35 p,; =0

f12,1 = 15

The feasibility check subproblem at hour 2 of iteration 1 is given as

Minr

St.—fpp —f132+ P12 =0

—fa30+ fip0 + P2 =0

f13'2 + f23'2 +r =45
P12 <50% Iy,
— Pyp <-10% 1,

Pap <20 15

Iy
=Py <91y

Z
2
Ze:

f13’1 = 20

f23’1 = 15 .

15



The feasibility check solution is r=5 p;, =40 py =0

~20< f;,, <20
—20< f15, <20
~30< fpy, <30

f12,2 = 20

f13'2 = 20

f23’2 = 20 . The

dual multipliers of the operation sub-problem at hour 2is & =0 4 =0 A3=-1 4, =0.

The optimal operation subproblem at hour 2 is infeasible since r=5>0. The infeasibility cut is as
follows:

5+50% 41 * (115 —115) =10% 2 * (13, =T15) +20% 2 * (15 = 1) =5* 4 *(1 0 — [ )

=

5+20%(—1)*(l,, —0) <0

MP2: SCUC master problem iteration 2

Min Ziower

St

Table 6.6 shows the unit commitment solution at iteration 2.

SP2: Feasibility check subproblem at hours 1- 2 iteration 2

Ziower = 300* 11 +300* ey, +200* rp1 +200* 5,
+50* B11 +50* By +0% B +0* By

ajp =P =111-0

a1y — P2 =l — g

Q1= Po1=12-0

Uz =Po =ln—lxn
501, +20*1,, >35
50% 1, +20% 1, > 45
5420%(~1)* (1 ,, ~0) <0

Table 6.6 Unit Commitment and operation cost at iteration 2

Hours 1 2 Zigwer ($)
Unit 1 1 1
Unit 2 0 1 500

Check the feasibility at hours 1-2; here r =0 which means the optimal operation subproblem is feasible at

hours 1-2.

SP1: Optimal operation subproblem at hours 1- 2 iteration 2

The optimal operation subproblem at hour 1 of iteration 2 is given as
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Mln Wl 210* pll +10* p21
St.—fio1— fi31+ P11 =0
— g1+ fip1+ P2 =0
f1311 + f23'1 +I = 35

Py <50% 0y, 7y
— Py <-10*1y, 7y
P2y <20* 0y 2
- P2 S—5*|A21 )

~20< fp, <20
—20< fi5, <20
—30< fp; <30

The primal solution of feasibility check subproblem at hour 1 isw; =350 p;; =35 py; =0. The dual

multipliers of the operation subproblemare z{ =0 7] =0 5 =0 7} =0.

The optimal operation subproblem at hour 2 of iteration 2 is given as
Minw, =10p;, +10p,,
St.—fi20 = f132 + P12 =0

—fa30+ fiop + Py =0

fi32 + fa32 =45

P12 <50* I3, 7T
~ ppp <-10*1y, o
Py <20% 1, %%
~ Py 5% 7y

-20<f,,<20
-20< fi3, <20
-30<fy,<30
The primal solution of feasibility check subproblem isw, =450 p;, =40

multipliers of the operation subproblemarezy =0 7; =0 x5 =0 73 =0.

We consider the feasibility cut for the third iteration because
Zypper =900+ W, +W, =500+350+450 =1300 > 75 =500,
Ziower =300* g1 +300* 24, +200* 21 +200*

+50* f11 +50% S, +0%* 1 +07* S,

+350+0
+450+0

Py, =5. The dual
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MP2: SCUC master problem iteration 3:

Min Ziower
Zjower = 300* 11 +300* oy, +200* rp1 +200* 2,
+50% Sy +50% 15 +0% By +0* S,
St ay-pu=Il-0
ap; — P2 =l —ln
Ay = Po1=151-0
Opp =P =l —ln
50 I,, +20* 1, >35
50%1,, +20*1,, > 45
5420%(=1)*(l 5, —0) <0
Ziower > 300% cty +300% cry, +200% ayy +200% oz
+50% f11 +50% 15 +0% By +0* B2,
+350+0
+450+0

Table 6.7 shows the unit commitment solution at iteration 3.

Table 6.7 Unit Commitment and operation cost at iteration 3

Hours 1 2 Zigwer ()
Unit 1 1 1
Unit 2 0 1 1300

It is 0bViouS Z)gyer = Zypper =1300 in next calculations and the final solution should be z =1300.

7. Generation Resource Planning

The objective function of the generation resource planning is to minimize the investment and
operation cost while satisfying the system reliability. The objective function is formulated as follows:

_ TC T B NG
MinY =X Ze[Clit *(Xit = Xj(t-1) )]+ Y X DTy * X OCipt * PG it (7.1)
t i t=1b=1 i=1
where
i Existing or candidate unit index
b Load block index
t Planning year index
B Number of load blocks
CG Number of candidate units
T Planning horizon

NG Number of committed units

Clit Capital investment for candidate unit i in year t

DTy,  Duration of load block b in year t

OCi,x  Operating cost unit i among committed units at load block b in year t
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Xit State variable associated with candidate unit i in year t; 1: selected, O: rejected. (Xjt_1) < Xit)
(Xijo =0)
Psint  Dispatched capacity of committed unit i at load block b in year t

The first terms of the objective function (7.1) is the construction cost for new generating units. The
second item is the operation cost.

The set of planning constraints included in the resource planning problem include:
Constraints (7.2)-(7.5) represent the availability of capital investment funds in year t, projected resource
capacity for year t, maximum number of units to be added at a planning year, and projected start of
construction time, respectively.

CG

_21C|it *(Xit — Xi(t—l)) <Cl; (t=12,---,T) (7.2)
1=

CG

D Cap; * (X — X;y) SUC,  (t=12,--T) (7.3)
i=1

CG

D (X = Xiey) SUN,  (t=12,--,T) (7.4)
i=1

Xit=0 if t<CT; (i=12,---,PG)(t=12,---,T) (7.5)
where

Cap; Capacity of unit i

Cl, Capital investment in year t

CT,; Required construction time for candidate unit i
UC;  Upper limit for generating capacity added in year t
UN;  Upper limit for the # of units added in year t

Constraints (7.6) represent the system capacity requirement at planning year t. In other words, the
total installed capacity of the candidate and existing units must meet the forecasted peak load demand and
reserve capacity based on the system requirements.

EG CG

> Cap; + 2 Cap; * Xt = Pp pt + PR pt

i=1 i=1 (7.6)
(t=212,---,T) (b = peak load block)

where

EG Number of existing units
Popt  Forecasted system load at load block b in year t
Prot  Forecasted system reserve at load block b in year t

Additional constraints for representing a GENCO may also be included. For example, a GENCO
applies constraint (7.7) for seeking the optimal location of a candidate unit among sites 1 through L:

> X <1 (t=T)(CS=1,---,L) 7.7
ieCS
where
CS Set of candidate sites

Likewise, a GENCO may look for the best mix of new units for supplying the projected load. For
instance, using constraint (7.8) the resource planner may consider two possible options for adding a 500
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MW capacity. These options may include a 500 MW unit or five 100 MW units. The following constraint
(7.8) is used to search the better option among possible alternatives (denoted by A and B alternatives in

this case):

XAlt +XB]I <1

Xt =Xpot =-=Xpmt t=T)
Xpit = Xpot == Xppt (t=T)

(AL A2,---, Am € A Combination)
(BL, B2,---,Bn € B Combination)

System constraints (7.9)-(7.14) at load block b in planning year t are as follows:

The first Kirchoff’s law — power node balance equations:

sf+p+r=d

The second Kirchoff’s law for line flows
fmn = (5m _5n)/xmn

Generation limits for existing units,
PGi,min < PG,ibt < I:>Gi,max

Generation limits for candidate units,
PGi,min * Xit < Pg ibt < Pgi,max ™ Xit

Transmission flow limits:
_PLj,max < fmn SPl—j,ma)( (jem,n)

Reliability requirement:

ND
DTyt kzlrk,bt < épt

where
j Transmission line index
k Load point index

m,n  Bus index

ND Number of load points

Psimin Lower limit of generation of unit i
Pcimax Upper limit of generation of unit i
PLjmax  Capacity of line j from node mto n
Ik Curtailment of load k

fon Flow on line j from node m to node n
Xmn reactance of line j from node mto n

bt Acceptable level of curtailment at load block b in year t
d Node load in vector form

f Power flow in vector form

p bus real generation in vector form

r Curtailment in vector form

(7.8)

(7.9)

(7.10)

(7.11)

(7.12)

(7.13)

(7.14)
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S Node-branch incidence matrix

The Benders decomposition is used here in which the problem is decomposed into a master problem
and two subproblems representing feasibility and optimal operation subproblems. The master, which is a
mixed integer program (MIP), considers an investment plan for generating units based on the available
types of units, suitable investment programs, and prospective locations based on the availability of site,
and so on.

Once the candidate units are identified by the master problem, the feasibility subproblem will check
whether this plan can meet system constraints (7.9)-(7.14). If the curtailment violations persist, the
subproblem will form the corresponding Benders cut, which will be added to the master problem for
solving the next iteration of the planning problem. Once the violations are removed, the solution of the
optimal operation subproblem will measure the change in the total cost resulting from marginal changes
in the proposed resource planning. The iterative solution will form one or more constraints for the next
iteration of the optimal operation subproblem by using dual multipliers. The iterative process will
continue until a converged optimal solution is found.

Solution Procedure

1. The initial generation resource planning master problem (MP1) is formulated as follow:
Min Z

z ZT%C%G[Q i (Xt — X)) (7.15)

Subject to constraints (7.2)-(7.8).

The initial plan must satisfy the reliability requirement (7.14) at load block b in planning year t to
provide a secure supply while minimizing the cost of operation. The n™ operation subproblem SP1
(feasibility check) is feasible if and only if the optimal value of the following subproblem is less than ¢

ND
Min v" = DTy, kglrk’bt (7.16)

The objective (7.16) is to mitigate network violations and minimize the load curtailment by applying
a generation redispatch. In this subproblem, we impose power balance (7.9), DC power flow equation
(7.10), and generation and line flow limits (7.11-13). Note that the generation limits for candidate units
can be rewritten as:
on
PG,ibt < F)Gi,max * ><it ﬂibt

n
= PG,ibt <—Pasi,min * Xit Aibt

2. If constraint (7.14) is not satisfied, the corresponding infeasibility cut given by (7.17) will be generated
as follows:

CG _
v+ El Zipt Pai,max (Xit = Xit) = Aibt Pimin (Xit = Xit) < &bt (7.17)

The multiplier ’1inbt is interpreted as the marginal decrease in unserved energy for a 1 MW generation

increase in candidate unit i at load block b in the planning year t and associated with the n™ trial plan.
These n = 1,2,3,...,N-1 Benders cuts from the previous iterations are added to the master problem of
resource planning to get the n™ trial investment plan. The process will be repeated until a feasible plan is
found for meeting the requirement (7.14) on system reliability.
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3. If the above subproblem is feasible, then the optimal operation subproblem for every year and load
block is formulated as follows:

NG
Min wpi = DTy * 3 OCipt * Pg bt (7.18)
1=

Subject to the constraints (7.9)-(7.13). Similarly, note that the generation limits for candidate units can be
rewritten as:
=N
PG,ibt < PGi,max * Xit Tipt
n
—Pg,ibt < =Pai,min * Xit Zipt

So the feasibility cut associated with the n'™ trial solution is
CG
Z23% 3 Clig*(Xit — Xj(t-1))
ti=l (7.19)
n —N n n n
+%%{Wbt + [ﬂibt Pai, max (Xit = Xit) — Zint Pi, min (Xit — Xit)]}

The revised generation resource planning problem (MP2) (7.20) minimizes cost subject to planning
constraints as well as feasibility and infeasibility cuts from the operation subproblems.

Min Z

Z2 T%C%G[Cht *(X it = Xit-1) )] (7:20

St

Planning constraints (7.2)-(7.8).
Feasibility and infeasibility cuts from previous iterations

If all operation subproblems are feasible then the feasibility cut is:
CG «
Z 23 3 Clig*(Xit = Xj(t-1))
ti=1 (7.21)
+ %%{W& + [ﬁigt Poi.max (Xit = Xit) = Z b Poi. min (Xit - Xirt])B

If one or more operation subproblems (feasibility check) are infeasible then the infeasibility cuts are:

CG
v+ _Zl ZibtPoi max (Xit = Xit) = Aibi Pai.min (Xit = Xit) < épy (7.22)
i=

where n is the current number of iterations
AN, 7" A", 2" are the multiplier vectors at n™ iteration
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The important feature of the Benders decomposition is the availability of upper and lower bounds
to the optimal solution at each iteration. These bounds can be used as an effective convergence criterion.
The convergence criterion is

2(Y-2)
7.23
Y+2) =4 (7.23)
where
T CG T B
Y =3 Flet * (X~ Xy 1+ 3 Z DTy * > OCibt * Pg, ibt
toi t=1b=1 i=1 (7.24)
T CG T B
% Z[Cht *(Xit = Xi(t-1) )]+ Z Z
i =1b=1
Example

A 3-bus system, shown in Figure 1, is used to illustrate the proposed generation resource planning model.
Existing and candidate generator, load and line data in per unit are given in Tables 2 through 5. We
assume the studied planning period only has one-year interval. Loads are assumed constant during the
period. Two candidate generators at bus 3 can be selected to supply the additional load at bus 2 in

planning year 1. The maximum energy not served requirement () is 0 p.u. in the planning year 1. Reserve
requirements are not considered in this example.

Busl Bus2
D =2

L1

L3
Figure 1 Three-Bus System Example

Table 2 Existing Generator Data for 3-bus System

Unit Min Capacity Max Capacity Cost

(p.u.) (p.u.) ($)/h
1 0.5 2.5 10 g,
2 0.6 2.0 10 g,
Table 3 Candidate Generator Data for 3-bus System
Unit Min Capacity Max Capacity Cost Investment
(p.u.) (p.u.) ($)/h Cost/Unit ($)
3 0.6 3.0 80; 50,000
4 0.6 3.0 10 g4 40,000
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Table 4 Load Data (MW)

Planning Year L1 L2 L3
0 1 1 1
1 1 3 1

Table 5 Line Data for 3-bus System

Line  # of lines Capacity/line (p.u.)

1-2 1 0.5
2-3 1 1.0
1-3 1 0.5

The original objective is
Min 50000* (x5 —0) + 40000* (x, —0) +8760* (10g; +10g, +8g3 +10g,)
where x5 represents the state of the candidate unit 3 and x, represents the state of the candidate unit 4.

First, we solve initial generation planning master problem.

Generation planning master problem iteration 1:
Min Zlower

St Zjgwer =50000*(x3 —0)+40000* (x4 —0)
2.5+2.0+3.0x3 +3.0x3 >5.0
X3, X4 €{0, 1}

The solution is x3 =0,x4 =1 and zjgyer =40000 .

Operation subproblem iteration 1:

We check the feasibility of operation subproblem given the first trial of generation planning schedule. The

feasibility check is as follows:
Min8760*(r; +ry +r13)
St.—fp—fi3+9;+np=1
—fog+fp+0o+r, =3
f1a+ a3 +03+094+1r3=1
05<g,;<25
06<9g,<20

g3 <3.0% X3 23
~g3<-06%%3 A4
94 <3.0%%, Ay
~0,<-06%%, 2,
-05<f;, <05

-05< f;3<05
~1.0< f)3<1.0
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The primal solution of feasibility check isr=0.0. This means the trial schedule is feasible. The dual
multipliers of the operation subproblem is:

3=0 23=0 25=0 2,=0

Operation subproblem iteration 1:

The feasible subproblem is as follows
Min w=8760*(10*g; +10*g, +8* g3 +1094)

St.— f12 — f13 +gl =1
—fpa+fo+9p=3
fi3+fa3+03+04 =1
05<g; <25
0.6< gz <20
93 S3.0*)A(3 7Z'l3'l
—03 S—O.G*)A(g ﬂ'é
g4 S3.O*)A(4 72'1"_J
Cgs<06%% !
~05< fy, <05
~0.5< f13 <05

~1.0< 3 <1.0

The primal solution of feasible subproblem is:
w=_8760*50=438,000 g;=1.4839 g, =18037 g3=00 g,=1.7124

fi, =0.4928 f13 =-0.0139 f,3 =—0.6985

The dual multipliers of the operation subproblem are:
7§ =—(8760%2)=-17520 73=0 z§j =0 =0

Because zper =40000+w = 40000 + 438,000 = 478,000 > zjqer =40000, the feasible cut for the second
iteration is:
Ziower =50000* (x3 —0) +40000* (x5 —0) + 438,000+ 3.0% 7§ *(x3 — X3) —0.6* 73 * (X3 — R3)
+3.0% 78 * (x4 —R4) —0.6* 7} *(x4 — R4)
=
Ziower = 50000% (x5 —0) +40000* (x4 — 0) + 438,000+ 3.0* (~17520) * (x5 —0)

Generation planning master problem iteration 2:

Min Zjower

St Zjgwer =50000* (x5 —0)+40000* (x4 —0)
Zjower = 50000% (X5 —0) +40000* (x4 —0) + 438,000+ 3.0* (~17520) * (X3 —0)
2.5+2.0+3.0x3+3.0x4 25.0
X3, X4 €{0, 1}
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The solution is:

X3 =1,%X4 =0 and zjqyer =435,440.

Operation subproblem iteration 2:

Because of r=0.0 based on the above investment strategy, the trial schedule is feasible. The dual

multipliers of the operation subproblem is:

23=0 23=0 25=0 2,=0

Operation subproblem iteration 2:

The feasible subproblem is as follows
Min w=28760*(10*g; +10*g, +8* g3 +1094)

St.— f12 - f13 +01 =1
—fg+fip+9,=3
fiz3+f3+03+94 =1
05<g;<25
06< d»o <20
d3 SS.O*)A(g 71'3
—03 S—O.G*)A(g 73
d4 S3.0*24 Ty
-g4<-06*%y 7,
_05< fy, <05
~0.5< f13 <05
~1.0< fp3 <1.0

The primal solution of feasible subproblem is:
w=394,200 g, =09722 g,=1.5278 g3=25 g,=00

fi, =0.4722 fi3=-05 fy3=-1.0

The dual multipliers of the operation subproblem is:
7§ =0 73=0 z§ =0 mj=-(8760*2)=-17520

Because zper =50000+w = 50000+ 394,200 = 444,200 > 74,¢r = 435,440, the feasible cut for the second

iteration is:
Ziower =50000% (X3 —0) +40000* (x4 —0) +394,200 +3.0* 74 *(x3 —X3) —0.6* 74 * (X3 — X3)

-|-3.0*7Z'liJ *(X4 —)24)—0.6*7[!1 *(X4 —)24)

=
Zjower > 50000% (X5 —0) +40000* (x4 —0) + 394,200 — 0.6* (—17520) * (X, —0)
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Generation planning master problem iteration 3:

Min zjoper

St Zjgwer =50000* (x5 —0)+40000*(x, —0)
Ziower = 50000 (X3 — 0) + 40000 (x, — 0) + 438,000 + 3.0* (~17520) * (x5 — 0)
Ziower = 50000 (x5 — 0) + 40000 (x, — 0) + 394,200 — 0.6* (~17520) * (x4 — 0)
2.5+2.0+3.0x3 +3.0x4 5.0
X3, X4 €{0, 1}

The solution is:

X3 =1,%X4 =0 and zjqyer =444,200.

Operation subproblem iteration 3:

Because r =0.0 based on the above investment strategy, the trial schedule is feasible.

Operation subproblem iteration 3:

According to calculations, the primal solution of feasible subproblem is:

W=394,200 g, =09722 g,=15278 g3=25 g,=0.0

f1p =0.4722 f13=-05 fy3=-1.0

Because z,pper = 50000+ w = 50000 + 394,200 = zjo,¢r = 444,200, the optimal solution is obtained, which

show that selecting the economical unit 3 can save more money, though it has a higher investment cost

than the candidate unit 4.
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8. TRANSMISSION PLANNING

The objective function of the transmission planning is to minimize the investment and operation cost
under steady state while satisfying the system reliability requirement for each scenario ¢. The objective
function is formulated as follows:

_ T cL T B NG
MinY = £ 3 [Cl*(X jt = X je_p |+ £ £ DTy * T OCipt * P ipt 8.1)
t=1j=1 t=1b=1 i=1
where
Unit index

i

i Candidate line index

b Load block index

t Planning year index

B Number of load blocks

CL Number of candidate lines

T Planning horizon

NG Number of committed units

Cljt Capital investment for candidate line j in year t

DT,  Duration of load block b in year t

OCiyy  Operating cost unit i among committed units at load block b in year t
Xit State variable associated with candidate line j in year t; 1. selected, 0: rejected.

(Xi-1) < Xijt) (Xjo =0).
Psint  Dispatched capacity of committed unit i at load block b in year t

The first terms in the objective function (8.1) is the construction cost for new transmission lines. The
second item is the operation cost.

The set of planning constraints included in the transmission planning problem are:
Constraints (8.2)-(8.5) represent the availability of capital investment funds in year t, projected line
capacity for year t, maximum number of lines to be added at a planning year, and projected construction
time, respectively.

CL

.21C|jt*(x jt _Xj(t—l))SCII (t=12,---,T) (8.2)
J:

CL

2.Cap; * (X = Xy y) SUC, (t=12,T) (8.3)
i=1

CL

z(xjt _xi(t—l))SUNt (t=1,2,---,T) (84)
j=L

Xjt=0 if t<CT; (j=12-,NL)(t=12,,T) (8.5)
where

Cap; Capacity of line j

Cl, Capital investment in year t

CT; Required construction time for candidate line j
UC;  Upper limit for line capacity added in year t
UN;  Upper limit for the # of lines added in year t
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Additional constraints for representing a TRANSCO may also be included. For example, a
TRANSCO applies constraint (8.6) for seeking the optimal location of a candidate line among corridors 1
through L.:

X Xj<1 (t=T)(CS=1,---,L) (8.6)
jeCs
where
CS Set of candidate line corridors

Likewise, a TRANSCO may look for the best mix of new lines for transferring the electricity to the
projected load. For instance, using constraint (8.7) the transmission planner may consider two possible
options for adding a 200 MW capacity. These options may include a 200 MW line or two 100 MW lines.
The following constraint (8.7,8.8) is used to search the better option among possible alternatives (denoted
by A and B alternatives in this case):

Xpt + Xpggt £1

Xt =Xpot =--=Xamt (t=T)

Xpyt =Xpgot == Xppt (t=T) (8.7, 8.8)
(AL A2,---, Am € A Combination)

(BL, B2,---, Bn € B Combination)

System constraints (8.9)-(8.15) for each scenario ¢ at load block b in planning year t are as follows:

The first Kirchoff’s law — power node balance equations:
sf+p+r=d (p) (8.9)

The second Kirchoff’s law for existing lines
fon = 7mn (@m —60n) =0 (®) (8.10)

The second Kirchoff’s law for candidate lines
|fmn —7mn (Om _en)| <Mj*1-Xj) (jemn) (o) (8.11)
where M is a large positive number.

Transmission flow limits for existing lines:
—PLj max < fnn < PLj max (jem,n) (9) (8.12)

Transmission flow limits for candidate lines:
|fmn| < PLj max * X jt (Jemn) (p) (8.13)

Generation limits:
Pgi,min < PG, ibt < Pai,max (9) (8.14)

Reliability requirement:

ND
DTyt * kzlrk,bt < &pt (®) (8.15)
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where

k Load point index

m,n  Bus index

ND Number of load points

Psimin LoOwer limit of generation of unit i

Paimax Upper limit of generation of unit i

PLmmax  Capacity of line from node m to node n

Me Curtailment of load k

fon Flow on line j from node m to node n

Yrmn Line susceptance in vector form

Ept Acceptable level of curtailment at load block b in year t
[0) Index of scenario (including the steady state and contingencies)
d Node load in vector form

f Power flow in vector form

p Bus real generation in vector form

r Curtailment in vector form

s Node-branch incidence matrix

The Benders decomposition is used here in which the problem is decomposed into a master problem
and two subproblems representing feasibility and optimal operation subproblems. The master, which is a
mixed integer program (MIP), considers an investment plan for transmission lines based on the available
types of lines, suitable investment programs, and prospective locations based on the availability of
corridor, and so on.

Once the candidate lines are identified by the master problem, the feasibility subproblem will check
whether this plan can meet system constraints (8.9)-(8.15). If the curtailment violations persist, the
subproblem will form the corresponding Benders cut, which will be added to the master problem for
solving the next iteration of the planning problem. Once the violations are removed, the solution of the
optimal operation subproblem will measure the change in the total cost resulting from marginal changes
in the proposed transmission planning. The iterative solution will form one or more constraints for the
next iteration of the optimal operation subproblem by using dual multipliers. The iterative process will
continue until a converged optimal solution is found.

Solution Procedure

The initial transmission planning master problem is formulated as follow:
Min Z

.
z> %%‘L[CI It *(x it = Xjt- | (8.16)

Subject to constraints (8.2)-(8.8).

The initial plan must satisfy the reliability requirement (8.15) for each scenario ¢ at load block b in
planning year t to provide a secure supply while minimizing the cost of operation. The n" operation
subproblem is feasible if and only if the optimal value of the following feasibility check subproblem is
less than ¢

- _N\D
Min vy = DTy kZ Mk bt () (8.17)

The objective (8.17) is to mitigate network violations and minimize the load curtailment by applying
a generation redispatch. In this subproblem, constraints (8.9-8.14) are taken into account. Note that the
constraints (8.11) and (8.13) corresponding to candidate lines can be rewritten as
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fon =7mn(Om —Gr) <M j*1-X ) (jemn) (p) 73
—(fon =7mn(@m =) <M j*A-X ) (jemn) (p) =
fn < PLj max * X jt (jemn) (p) 4
_fmnSPLj,max*xjt (Jemn) (p) 4

If constraint (8.15) is not satisfied, the corresponding infeasibility cut given by (8.18) will be
generated as follows:

CL
th + 'Zl(zi?)t +iinbt)l:)'—j,max(x jt =X Tt) —(ﬁ?bt +Erj]bt)M j (X jt =X ?t) < &p (8.18)
J:

These n = 1,2,3,...,N-1 Benders cuts from the previous iterations are added to the master problem of
transmission planning to get the n™ trial investment plan. The process will be repeated until a feasible plan

is found for meeting the requirement (8.15) on system reliability.
If the above subproblem is feasible, then the optimal operation subproblem under the steady state for

every year and load block is formulated as follows:

NG
Min wj; = DTp; * 3 OCijpt *Pg it (8.19)
1=

Subject to the constraints (8.9)-(8.14). Note that the constraints (8.11) and (8.13) can be rewritten as
fn = 7mn(@m —0n) <M j*(1-X5) (jem,n) B
—(fon =7mn O =) <M j*1-X ) (jemn) p
fmn < PLj max * X jt (jem,n) a
a

— fmn < PLj max * X jt (Jem,n)

Therefore, the feasibility cut associated with the n'" trial solution is

CL
Z>3 ¥ Clji*(Xjt = X j-1)

tj=1
S @ T el )PL X=X =(Bh + 8" IM:i(X i — X
+%% Wy + jzl(aibt +Qipt) j,max( jt— jt)_(ﬂjbt +£jbt) j( jt— jt)
(8.20)
Thus, the revised transmission planning problem MP1 (8.21) minimizes cost subject to planning
constraints as well as feasibility and infeasibility cuts from the operation subproblems.
Min Z
(8.21)

Z z%csz[Cl jt *(X jt = Xj(t-1) )]

St Planning constraints (8.2)-(8.7).

Feasibility and infeasibility cuts from previous iterations are:
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It all operation subproblems are feasible then the feasibility cut is:

CL
YA 2% _21C| jt*(X jt — X j(t—l))
J:

CL _
+%% WQt + X (albt +a|bt)PLJ max(xjt ?t)_(ﬂjnbt +£r}bt)Mj(th -X ?t)}
i=

(8.22)

However, if one or more operation subproblem (feasibility check) is infeasible then the infeasibility cuts
are:

Vi + Z (’1|bt At )PLj,max (X jt = X ?t)—(fjnbt + 25t IM (Xt = X o) < (8.23)
where n is the current number of iterations

AN AN 7", 2" are the multiplier vectors at n™ iteration

The important feature of the Benders decomposition is the availability of upper (YY) and lower bounds

(2) to the optimal solution at each iteration. These bounds can be used as an effective convergence
criterion. The convergence criterion is

2r-2) <A (8.24)
(Y+2)
where
T CL N T B
Y = ZZ[C'jt (th_xj(t—l))]+ Y X DTy * ZOClbt PG, ibt
t t=1b=1 i=1 (8.25)
3 Ser (X - X e )+ & 2w |
. . — - _ +
t jt jt j(t-1) ) bt
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The solution framework is shown as follows:

Master Problem

Infeasibility Cut nfeasibility Cut

/TN

Feasibilitv Check Subproblem Feasibility Check Subproblems

Plan —
Feasibility Cut

Ontimal Operation Subproblem

Figure 1 Solution Framework

Example 1

A 4-bus system, shown in Figure 2, is used to illustrate the proposed transmission planning model. Bus 1
is the slack bus. Existing and candidate line, generator, load data are given in Tables 1 through 3. We
assume the studied planning period only has one-year interval. Loads are assumed constant during the
period. At least one of the two candidate lines should be built to transfer the electricity to the new load
bus in the planning year 1. The maximum energy not served requirement (¢) is 0 p.u. in the planning year
1.

Busl Bus2

Bus3 \ ./ I | Bus4

Figure 2 Three-Bus System Example
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Table 1 Existing and candidate line Data for the 4-bus System

Line | From To Reactance | Capacity (MW) | Investment
bus bus (pu) cost ($)
1 2 4 0.2 100 6,000,000
2 3 4 0.2 100 5,000,000
3 1 2 0.1 150 -
4 2 3 0.2 100 -
5 1 3 0.1 150 -

Table 2 Generator Data for the 4-bus System

Unit Min Capacity (MW) Max Capacity Cost
(MW) ($/MWh)
1 50 150 10
2 100 200 8
3 50 100 10

Table 3 Load Data (MW)

Planning Year L1 L2
1 200 200

The original objective is Min 6,000,000* (x; — 0) +5,000,000* (x, —0) +8760* (109, +8g, +10g3)

where x; represents the state of candidate line 1 extending from 2-4 and x, represents the state of
candidate line 2 extending from 3-4.

First, we solve the initial transmission planning master problem.

Transmission planning master problem iteration 1:

Min zjoper

St Zigwer =6,000,000*(x; —0)+5,000,000* (x5, —0)
X1 +Xp 21
X1, X7 €{0,1}

The solution is: x; =0,x, =1 and zjger = 5,000,000.

Operation subproblem iteration 1:
We check the feasibility of operation subproblem given the first trial of transmission planning schedule.
Assume M= 1000. The feasibility check is as follows:
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Min 8760*(ry +15)
St.—f1p-f13+09,=0

—fog+ 1o -y +9gp=0
f13+ f23—f34+r1=200
f24+f34+g3+r2 =200

6,-6
6, -6
9 _0

0,0 .
o - 02 708) <1000% (@)
(20~ 2708 ) ) <1000% (1~ 3y)

fay — (03 “94%2 <1000%(1—%,)
~(fay -G 700)7 ) <1000%(1-%,)
150 < f,, <150

150 < f;5 <150

100 < fpq <100

fog <100%%, 44

~f <100%%; A,

fay <100%%, A,

~ 3 <100%%, 4,

50 < g, <150

100 < g, < 200

50 < g5 <100

6,=0

The primal solutions of feasibility check are

fip =50, f13 =150, fo3 =100, oy =0, f5, =68.6578 6 =0, 0, =5, 03 =15, 6, =—28.7316

g =100, g, =150, g3 =100 and r=r, +r, =18.6578+31.3422=50.0, which means the trial schedule is

infeasible. The dual multipliers of the operation subproblem are:

=0 A,=8760*(-1) A,=0 A,=0
7=0 z,=0 7,=0 z,=0

Therefore, the infeasibility cut is given as

8760*r + (Ag +A;) *100* (X —%q) + (A3 + 1,) *100% (X, —X3)
—(771 +£1)*1000*(X1—)21)—(772 +£2)*1000*(X2 —iz)ﬁo

=

438,000 -876,000*(x; —0)<0
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Transmission planning master problem iteration 2:

Min Zjower

St Zjgwer =6,000,000* (x4 —0)+5,000,000* (x5 —0)
Xp+Xp 21
438,000—-876,000*(x; —0)<0
X1, X2 €40, 1}

The solution is: x; =1, x, =0 and z;qer = 6,000,000.

Operation subproblem iteration 2:
The feasibility check is as follows:
Min 8760*(ry +15)
St.— f12 — f13 +gl =0
—fag+fip—fou+9g,=0
f13 + f23 — f34 + rl =200

f24+ f34+g3+r2 =200

6,-6
6, -6
9 _0

f - 02708) <a000%(-%) 7
(o -2 708 <1000+ 0-%)
f34—(03_94%2 <1000%(1—%,) 7

—(f34-(‘93‘94%2)g1000*(1—>‘<2) 7,
-150 < f;, <150
~150 < f;5 <150
-100 < f,3 <100

fog <100%% 4
—fgq <100%% A4
fay <100*%, Ay
— f34 <100*X, 4,
50 < g, <150

100< g, <200

50 < g5 <100

6,=0

Because r =0.0 based on the above investment strategy, the trial schedule is feasible.

Operation subproblem iteration 2:

The feasible subproblem is as follows
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Min 8760*(10*g;, +8*g, +10*g3)
St.— flz - f13 +0q =0

The primal solutions of feasible subproblem are:

—faa+fp—fu+9,=0
f13 + f23 — f34 =200
f24 + f34 +03 =200

o,-0
fr, — (1 2%1 -0

6, -6
flS_( 1 3%1 =0

g, -6
f23_( 2 3%2 =0

fo @2 =08)/ <1000%(1- )
~(foq—~#2704)1 ) <1000 (1- %)
fay — (03 “94%2 <1000%(1—%,)

~(fay -0 700)7 ) <1000%(1-%,)
~150 < f;, <150
~150 < f;53 <150
~100 < f,3 <100

fg <100%%, @
- f24 SlOO*)A(l Ql
f34 SlOO*)A(Z 52
— f34 3100*)’{2 QZ
50 < g; <150

100 < g, <200

50 < g5 <100

0, =0

w = 31,536,000

fip =—25, f13 =125, fpg =75, foy =100, fay =0 6y =0, 6, = 2.5, 63 = —12.5, 0,

01

The dual multipliers of the operation subproblem is:

o

A

=100, g, = 200, g3 =100

=0 ;=0 a=0 a,=0
=0 =0 B,=0 p,=0

17.5

Because zpper = 6,000,000+ w = 6,000,000 +31,536,000 = 37,536,000 > Zjguer = 6,000,000, the feasible cut for
the second iteration is:

Ziower = 6,000,000* (x; —0) +5,000,000* (x, —0) + 31,536,000
+(ag +aq)*100* (g — X1) + (@2 + @) *100* (x5 —X;)
—(Br+ ) *1000% (x1 — %4 ) = (B2 + B,) ¥1000* (x; —X2)

=

Zjower = 6,000,000% (x; —0) +5,000,000% (x, —0) + 31,536,000
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Transmission planning master problem iteration 3:

Min zgper
St Zjower = 6,000,000*(x; —0) +5,000,000* (x5 —0)
Xp+Xp 21

438,000—-876,000*(x; —0)<0
Zjower = 6,000,000* (x; —0)+5,000,000* (x5 —0) + 31,536,000
X1, X2 €{0, 1}

The solution is: x; =1,x, =0 and zjqyer = 37,536,000 .

Operation subproblem iteration 3:
Because of r=0.0 based on the above investment strategy, the trial schedule is feasible.

Operation subproblem iteration 3:
According to calculations, the primal solution of feasible subproblem is:
w = 31,536,000

f1p =25, f13 =125, f,3 =75, 5, =100, f34 =0 6, =0,0, =25,03 =-125,0, =-17.5
g1 =100, g, =200, g3 =100

Because  zypper = 6,000,000+ w = 6,000,000 +31,536,000 = 7jer = 37,536,000, the optimal solution is

obtained, which show that selecting the line 2-4 can satisfy the system curtailment requirement, though it
has a higher investment cost than the candidate line 3-4.

MATHLAB FORMULATION:

function [X,FVAL,EXITFLAG,OUTPUT,LAMBDA] = LPModel

f=[0 0O 0 0O 0O 0O O 0O O O O O 1 1]; %% objective
A=[0O O 0 1 0 0-5 0 50 0O O O O %% line 2-4
0O 0O O-1 0 05 0-50 0 0 O O %% line 2-4
1:

bT=[1000 1000];

b=transpose(bT);

Aeg=[-1 -1 O O 0O OOO1 0O O 0O O %% bus 1
1 0-1-1 0 0 0 O OO1 0O O O %% bus 2
0O 1 1 0-1 0 O O 0O O O O 1 O %% bus 3
O 0 O1 1. 0O 0O 0O 0 0O O 1 0 1 %% bus 4
1 0 0 0O 0-10 10 0 O O O O O O %% Nline 1-2
0O 1 0 0 0-10 0 10 O O O O O O %% line 1-3
O 01 00 0O-55 0 00 0 O0 0 %% line 2-3
O 0O 0O0O1 0O 0O-5 50 0 0 O O %% line 3-4

1:

beqT=[0 0O 200 200 0O O O O];

beg=transpose(beqT);

LBT=[-150 -150 -100 O -100 O ~-Inf -Inf -Inf 50 100 50 O O];
%% lower bound
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LB=transpose(LBT);

UBT=[150 150 100 O 100 O Inf Inf Inf 150 200 100 Inf
Inf]; %% upper bound

UB=transpose(UBT);

[X,FVAL,EXITFLAG,OUTPUT, LAMBDA]=LINPROG(F,A,b,Aeq,beq,LB,UB); %% LP
function

SOLUTION:
%% F, A, b, Aeq, beq, LB and UB matrix for each iteration
%%Feasibility check --- Iteration 1:

f=[0 0 0O O 0 O 0O 0O O 0O O O 1 17; %% objective for one

hour

A=[0 0O 0 1 0 0O0-5 0 50 0 0O O O %% line 2-4

0O 0O 0O-1 0 0 5 0-50 0 0 O 0O %% line 2-4
1:

bT=[1000 1000];

b=transpose(bT);

Aeg=[-1 -1 O O 0 OOO1T 0O O 0 O %% bus 1
1 0-1-1 0 0 0O OOO 1 O O O %% bus 2
0O 1 1 0-1 0 0O 0OOO O O 1 O %% bus 3
O 0 0O1 1.0 0 0 0 0O O0O 1 0O 1 %% bus 4
1 0 0 0 0O-10 10 0 0 O 0O O O O %% Mline 1-2
0O 1 0 0 0-10 0 10 0 0O O O O O %% Mine 1-3
O 01 00 O-55 0 0000 0 %% line 2-3
O 00OO1 0 0O-550 0 0 0 0 %% line 3-4

1;
beqT=[0 O 200 200 O O O O0];
beqg=transpose(beqT);
LBT=[-150 -150 -100 O -100 O ~-Inf -Inf -Inf 50 100 50 O O];
%% lower bound
LB=transpose(LBT);
UBT=[150 150 100 O 100 O Inf Inf Inf 150 200 100 Inf
Inf]; %% upper bound
UB=transpose(UBT);

%%Feasibility check --- lteration 2

f=[0 0 0 O 0 O 0O 0O O 0 O O 1 1]; %% objective for one
hour

A=[0 O 0O 0O 1 0 0O0-5 50 0 0 O O %% line 3-4
0O 0 O0O-1 0 0O 5-50 0 0 0 O %% Iine 3-4

1;

bT=[1000 1000];
b=transpose(bT);
Aeg=[-1 -1 O O
0 -1
1 1

O O %% bus 1
O O %% bus 2
1 0 %% bus 3

= OO
[eoNeNe)
[eNeoNe)
[eNeNe)
[eNeoNe)
OOoOpR
(el Ne)
[eNeNe)

1 -1
0 0 -



0O 0 0O OO O 1 0 1 %% bus 4

0O %% line 1-2
0O %% line 1-3
0O 0 0 O O %% line 2-3

O 0 0 0 O %% Nline 2-4

cII;
S
o
oNe]
oo
(oNe]
oo
oNe]

oOo0oor o
oOoOoroo
o000
RPOOOR
ololoNal

|

=

o

o

=

o

1;
beqT=[0 O 200 200 O O O O];
beqg=transpose(beqT);
LBT=[-150 -150 -100 -100 O O ~-Inf -Inf -Inf 50 100 50 O O];
%% lower bound
LB=transpose(LBT);
UBT=[150 150 100 100 O O Inf Inf Inf 150 200 100 Inf
Inf]; %% upper bound
UB=transpose(UBT);

%%Optimal operation --- lteration 2

f=[0 0 0 0O 0 O O O O 10 8 10]; %% objective for one hour

AsK[0 0 0 0O 1 O O-5 50 O O %% line 3-4

O 0 0O O-1 0 0O 5-50 0 O0%% line 3-4
1:

bT=[1000 1000];

b=transpose(bT);

Aeg=[-1 -1 O O O O O O O 1 0O O %% bus 1
1 0-1-1 0 0 0 0 0 0 1 O %% bus 2
0 1 1 0-1 0 O O O O O O %% bus 3
O 0 O1 121 0 0O O O O O 1 %% bus 4
1 0 0 0 0-10 10 0 0O O O O %% line 1-2
0O 1 0 0 0-10 0O 10 0 O O O %% Nine 1-3
O 01 00O O-55 0 0 0 O %% line 2-3
O 0 0O1 0 0-5 0 50 0 O %% line 2-4

1;
beqT=[0 O 200 200 O O O O];
beg=transpose(beqT);
LBT=[-150 -150 -100 -100 O O ~-Inf -Inf -Inf 50 100 50]; %%
lower bound
LB=transpose(LBT);
UBT=[150 150 100 100 O O Inf Inf Inf 150 200 100]; %% upper
bound
UB=transpose(UBT);

%%Feasibility check --- lteration 3

f=[0 0 0O O 0 O 0 0O O 0 O O 1 1]; %% objective for one

hour

A=[0 0O 0O 0O 1 0 0O0-5 50 0 0O O O %% line 3-4

O 0 OO-1 0 0O 5-50 0 0 0 O %% Iine 3-4

1;

bT=[1000 1000];

b=transpose(bT);

Aeg=[-1 -1 O O O
1 0-1-1 O

0O %% bus 1

0 0 0o 01 0 OO
O 0 0O OO1 0O O O %% bus 2
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1 0 %% bus 3
0O 1 %% bus 4
0O %% line 1-2
0O %% line 1-3
0O 0 0 O 0O %% line 2-3
O 0 0 0O O %% Nline 2-4

Oo0ooOoOroo

ool NoNol

ol NeoloNoN o

RPOOOFrO

cNoNoNoN N
I

1;
beqT=[0 0O 200 200 0O O O O];
beg=transpose(beqT);
LBT=[-150 -150 -100 -100 O O ~-Inf -Inf -Inf 50 100 50 O O];
%% lower bound
LB=transpose(LBT);
UBT=[150 150 100 100 O O Inf Inf Inf 150 200 100 Inf
Inf]; %% upper bound
UB=transpose(UBT);

%%Optimal operation --- lteration 3

f=[0 0O O 0O 0 0O O 0O O 10 8 10]; %% objective for one hour

A=[0 O O 0 1 O O0-5 50 0 O %% line 3-4

0O 0 0OO-1 0 0 5-50 0 0% line 3-4
1;

bT=[1000 1000];

b=transpose(bT);

Aeg=[-1 -1 0 O O O O O O 1 O O %% bus 1
1 0-1-1 0 0 0 0 0 0 1 O %% bus 2
0 1 1 0-1 0 O O O O O O %% bus 3
O 0 O1 1 0 0 O O 0 0 1 %% bus 4
1 0 0 0 0-10 10 0 0O O O O %% line 1-2
0O 1 0 0 0-10 0 10 0 O O O %% Nine 1-3
O 01 0 O O-5 5 0 0 0 0 %% line 2-3
O 0 O1 O 0-5 0 50 0 O %% Nine 2-4

1;
beqT=[0 O 200 200 O O O O0];
beg=transpose(beqT);
LBT=[-150 -150 -100 -100 O O ~-Inf -Inf -Inf 50 100 50]; %%
lower bound
LB=transpose(LBT);
UBT=[150 150 100 100 O O Inf Inf Inf 150 200 100]; %% upper
bound
UB=transpose(UBT);
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8.1 IMPACT OF CONTINGENCIES ON TRANSMISSION PLANNING:

If we consider the N-1 contingencies, the solution framework is shown as follows:

Master Problem

Infeasibility Cut

/TN

nfeasibility Cut

Feasibilitv Check Subproblem Feasibility Check Subproblems

Plan I
Feasibility Cut

Optimal Operation Subproblem

Figure 1 Solution Framework
Example 2

A 4-bus system is shown in Figure 2. Bus 1 is the slack bus. Existing and candidate line, generator, load
data are given in Tables 4 through 6. We assume the studied planning period only has one-year interval.
Loads are assumed constant during the period. At least one among three candidate lines should be built to
transfer the electricity to the new load bus in the planning year 1. The maximum energy not served
requirement (g) is 0 p.u. under the steady state and any single-line outages (N-1 checking principle) in the

planning year 1.

Busl Bus2

Bus3 | | Bus4

Figure 2 Three-Bus System Example
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Table 4 Existing and candidate line Data for the 4-bus System

Line | From To Reactance | Capacity (MW) | Investment
bus bus (pu) cost ($)
1 2 4 0.2 150 6,000,000
2 3 4 0.2 150 5,000,000
3 1 2 0.1 200 -
4 2 3 0.2 200 -
5 1 3 0.1 200 -

Table 5 Generator Data for the 4-bus System

Unit Min Capacity (MW) Max Capacity Cost
(MW) ($/MWh)
1 100 200 8
2 100 200 8
3 50 100 10

Table 6 Load Data (MW)

Planning Year L1 L2
1 200 200

The original objective is Min 6,000,000* (x; —0) +5,000,000* (x, —0) +8760*(10g; +8g, +109g3)
where x; represents the state of candidate line 2-4 and x, represents the state of candidate line 3-4.

First, we solve initial transmission planning master problem.

Transmission planning master problem iteration 1:

Min Ziower

St Zjgwer = 6,000,000 * (x; —0) + 5,000,000 * (x, — 0)
X+ X 21
X1, %o €{0,1}

The solution is: x; =0,x, =1 and zjger =5,000,000.

Operation subproblem under the steady state iteration 1:
We check the feasibility of operation subproblem given the first trial of transmission planning schedule.
The feasibility check is as follows:
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Min 8760*(r, +15)
St.—fp—fi3+09,=0
—fog+fip—fu+9,=0
f13 + fo3 — fa4 +1, =200
foq + f3q +03+1, =200

6, -6
6, -6
9 _0

fo-02708)  <a000%-%) 7
~(fo = P2700)1 ) <1000%(1-%)) g
f34—(03_94%2 <1000%(1—%,) 7

~(f3 %370 ) <1000%(1-%,)
~200< f1p <200
—200< f;53 <200
~200 < f,3 <200
fog <150*%, 44
—fp4 <150%%; 4,
fay <150*%, A,
— f3y <150*%, 4,
100 < g; <200
100< g, <200
50 < g3 <100
6, =0
Because r =0.0 based on the above investment strategy, the trial schedule is feasible.



Operation subproblem under the line 1-2 outage iteration 1:

The feasibility check is as follows:
Min 8760*(ry +15)

St

fi3+9,=0
—f3—fu+9,=0

fi3 + fo3 — 34 +1, =200

fos + 34 + 93 +15 =200

6, -6
6, -6

o - 02 708) <1000% (1)
(T 02 708)1 ) <1000 (- )
faq - @3 704) <1000%(1-%,)

~(faq 037 08)7 ) <1000%(1-2,)
~200 < f;5 <200
~200 < f,3 <200
fon <150%%;, A4
—fq <150%%; 4,
fay <150*%, Ay
— f34 <150*X, 4,
100 < g4 <200

100< g, <200

50 < g5 <100

6,=0

Because r =0.0, the trial schedule is feasible.

Operation subproblem under the line 1-3 outage iteration 1:

The feasibility check is as follows:
Min 8760%*(r, +1,)
St.— f12 +01 =0

—fos+f1p—fy+9,=0
f23— f34+r1 =200
f24+f34+g3+r2 =200

0L -0
le_(l 2%1 =0

6, -6
f23_( 2 3%2 =0
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f - @2 70)0 <1000%0-%) &
~(fp 0270y <1000% (- %) 7,
f34—(93“94%2 <1000%(1—%,) 7
~(f3 %370 ) <1000%(1-%,)
-200< fy, <200
—200 < fyg <200
foy <150%%;, A4
—fq <150%%; 4,
fay <150*%, A,
— f34 <150*X, 4,
100 < g; <200
100 < g, <200
50< g3 <100
6,=0
Because r = 0.0, the trial schedule is feasible.

Operation subproblem under the line 2-3 outage iteration 1:
The feasibility check is as follows:
Min 8760*(r, +15)
St.—f1p-f13+09,=0
fio—faa+95=0
fi3 — f34 + 1, =200
foq + fag + 93 +1, =200

0, -6
flz_( 1 2%1 =0

0, -6
f13_(1 3%1 =0

f -2 70)0 <1000%0-%) &
(g -2 708) ) <1000+ - %)
f34—(93_94%2 <1000*(1-%,) 7

~(fgy - B3 708) ) <100001-%,) 1,
~200< f1, <200

~200< f13 <200

fog <150%%, 44

—fu <150%%; A4

fas <150%*%, A,

— gy <150%%, 4,




100 < g < 200
100 < g, < 200
50 < g3 <100
6, =0

Because r =0.0, the trial schedule is feasible.

Operation subproblem under the line 3-4 outage iteration 1:

The feasibility check is as follows:
Min 8760*(r +1y)
St.—fip—f13+091=0

—f3+fp—fu+9,=0
f13+ f23+r1 =200
f24+g3+r2 =200

%
6,6
0 _9
f23—( ? 3%2 =0

fo0 @2 =0)  <1000%(1- %)

~(foq ~02704)1 ) <1000 (1~ %)
~200< f1, <200

200 < f15 <200

200 < f 5 <200

foq <150%%, 4

4 <150%%, A4

100 < g, <200

100 < g, <200

50 < g3 <100

0, =0

The primal solutions of feasibility check are

fip =—25.0, f13 =125.0, fpg =75, fp =0, f34 =0 & =0, 0, = 2.5, 03 =-12.5, 6, = 2.2010

gy =100, g, =100, g3 =100 and r =r; +r, =0+100=100, which means the trial schedule is infeasible for

the line 3-4 outage. The dual multipliers of the operation subproblem are:

2 =8760*(-1) A, =0

7

So,
8760*r + (Ag +A;) *150* (X — %) — (71 +7,) ¥1000* (¥ — %) <0

=

the infeasibility cut is as

876,000 -1,314,000*(x; —0) <0

47



Transmission planning master problem iteration 2:

Min Zjower

St Zjgwer =6,000,000*(x; —0)+5,000,000*(x, —0)
Xp+Xp 21
876,000-1,314,000*(x, —0) <0
X1, X2 €40, 1}

The solution is: x; =1, x, =0 and z;er = 6,000,000.

Operation subproblem under the steady state iteration 2:
The feasibility check is as follows:
Min 8760*(ry +1,)
St.—f1p-f13+09,=0
—fag+fp—fou+9g,=0
f13 + f23 — f34 + rl =200

f24+ f34+g3+r2 =200

6,-6

flz_( ' 2%1 =0
g, -6

f23_( 2 3%2 =0

f-02708)  <a000%(-%) 7
(g -2 708y <1000%0-R) 7,
f34—(03_94%2 <1000%(1—%,) 7

~(fay -0 700)7 ) <1000%(1-%,)
—200 < 1, <200
~200 < f;3 <200
—200 < fp3 <200
fog <150%%, 4
—fy <150%%; A,
fay <150*%, Ay
— f3 <150%%, 4,
100 < g; <200

100 < g, <200

50 < g3 <100

0, =0

Because r =0.0 based on the above investment strategy, the trial schedule is feasible.
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Operation subproblem under the line 1-2 outage iteration 2:
The feasibility check is as follows:
Min 8760*(ry +15)
St f13 +01 = 0
—fa3—f2q+9,=0
f13 + f23 - f34 +h = 200

f24+ f34+g3+r2 =200

0 —0
0, -6

f24—('92_04%2 <1000*(L-%y) 7
(o -2 708y <1000%0- %)
- @370/ <a000%(-%,) 7

~(fgy - 03708)7 ) <1000%-%,) 1,
~200< fy3 <200
~200 < f,3 <200
foy <150%%;, A4
—fq <150%%; 4,
fay <150*%, Ay
— f34 <150*X, 4,
100 < g4 <200
100 < g, <200
50< g3 <100
6, =0
Because r = 0.0, the trial schedule is feasible.



Operation subproblem under the line 1-3 outage iteration 2:
The feasibility check is as follows:
Min 8760*(ry +15)
St.—fip+9,=0
—f3+fp—fu+g,=0
fog — fgq +1 =200
fos + 34 + 93 +1p =200

6, -6
0 _9
f23—( ? 3%2 =0

f - @2 708) <a000%-%) 7

0, -0 *(1_ O
~(fg =27 00)0 ) <1000%0-3) 7,

g - @370 <a000(-%,) 7

(3 -0 700)7 ) <1000%(1-%,)
—200< f;, <200
—200< f,3 <200
fog <150%% 4
—foy <150%%; 4
fag <150*%, Ay
—f34 <150*%, 4,
100 < g; <200
100 < g, <200
50 < g5 <100
6, =0
Because r =0.0, the trial schedule is feasible.



Operation subproblem under the line 2-3 outage iteration 2:
The feasibility check is as follows:
Min 8760*(ry +15)
St.—fjp—f13+9;,=0
flo—faa+9p=0
f13 — f34 + rl =200

f24+ f34+gg+r2 =200

6, -0

flz_( ' 2%1 =0
o, -6

f13_( . 3%1 =0

f - @2 708) <a000%-%) 7
(124 =27 08)0 ) <1000%@-50) 7,
g - @370 <a000(-%,) 7

(3 -0 700)7 ) <1000%(1-%,)
—200< f;, <200
~200< fy3 <200
fog <150%% 4
—foy <150%%; 4
fag <150*%, Ay
—f34 <150*%, 4,
100 < g; <200
100 < g, <200
50 < g5 <100
6, =0
Because r =0.0, the trial schedule is feasible.



Operation subproblem under the line 2-4 outage iteration 2:

The feasibility check is as follows:
Min 8760*(ry +15)
St.—fjp—f13+9,=0

—fo3+fp+0,=0
f13+ f23— f34 +n =200
f34+93+r2 =200

6, -6
0, -6
0 —0

fay — (03 “94%2 <1000%(1—%,)

~(fgq - B3 708) ) <1000%(1-5)
~200< f1, <200

—200< 13 <200

—200< f 5 <200

fag <150*%, A

~fy <150%%, 4,

100 < g; <200

100 < g, <200

50 < g3 <100

6, =0

The primal solutions of feasibility check are

fi, ==25.0, f13 =125.0, fp3 =75, fpy =0, f3, =0 6 =0, 0, =2.5, 63 =—12.5, 0, =—12.3346

gy =100, g, =100, g3 =100 and r =r; +r, =0+100=100, which means the trial schedule is infeasible for

the line 2-4 outage. The dual multipliers of the operation subproblem are:

Ay =8760*(-1) A, =0
7y=0 7,=0

Therefore, the infeasibility cut is as

8760* 1+ (Ay +4,)*150* (X; —Kp) — (To +7,)*1000* (X, —X5) <0

=

876,000 -1,314,000*(x, —0) <0
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Transmission planning master problem iteration 3:

Min Zjower
St Zigwer = 6,000,000 * (¥ — 0) + 5,000,000 * (x, — 0)
X+ X9 21

876,000 -1,314,000* (x; —0) <0
876,000 — 1,314,000 * (x, — 0) <0
X, %o €{0, T}
The solution is: x; =1,x, =1 and zjqyer =11,000,000.

Operation subproblems under the steady state and any single-line outage iteration 3:

According to feasibility checks for the steady and any single-line outage, all r=0.0. Thus, the trial

schedule is feasible.

Operation subproblem under the steady state iteration 3:
The feasible subproblem is as follows
Min 8760*(10*g;, +8*g, +10*g3)
St.—fp—f13+9,=0
—fa3+fp—fyu+9,=0
fig + fog — f34 =200
fos + f34 + 03 =200

o -2 000 <1000%0-%) A
(g -2 708)7 ) <a000%@-%) B,
o -G08/ <1000%0-%,) B

(fgy - B30y <a000%0-%,) B,
200 f;, <200
~200< fp5 <200
—200< f,g < 200
fos <150% X a
fy, <150%%  a,
fo <150%%, @
fy <150%%, @,
100< gy < 200

100 g, < 200

50 < g5 <100

6, =0

The primal solutions of feasible subproblem are:
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w = 31,536,000

fi, =—14.7334, f3 =145.266, f,3 =80.0, f,, =105.2666, f3, = 25.2666
6, =0, 0, =1.4733, 63 =-14.5267, 6, = -19.58

gy =130.5331, g, = 200, g3 = 69.4669

The dual multipliers of the operation subproblem are:
=0 ;=0 a,=0 a,=0

=0 p =0 p=0 g, =0

Because z,pper =11,000,000+w =11,000,000+31,536,000 = 42,536,000 > Zjer =11,000,000, the feasible cut

for the second iteration is:
Ziower = 6,000,000% (x; —0) +5,000,000* (x, —0) + 31,536,000

+(ag +aq)*150* (xg — X1 ) + (@ + ) *150* (x5 — X5)

~ (1 +B,)*1000% (x1 — %)~ (B2 + B.,)*1000* (x, —X7)
=
Ziower = 6,000,000* (x; —0) +5,000,000* (x, —0) + 31,536,000

Transmission planning master problem iteration 4:

Min Z)ower
St Zjower = 6,000,000*(x; —0)+5,000,000*(x, —0)
Xp+Xp 21

876,000—1,314,000*(x; —0) <0

876,000-1,314,000* (x, —0) <0

Zjower = 6,000,000* (x; —0)+5,000,000* (x5 —0) + 31,536,000
X1, X2 €40, 1}

X1, X2 €40, 1}

The solution is: x; =1,x, =1 and zjyer = 42,536,000 .

Operation subproblems under the steady state and any single-line outage iteration 4:
Because all r =0.0 based on the above investment strategy, the trial schedule is feasible.

Operation subproblem under the steady state iteration 4:
According to calculations, the primal solution of feasible subproblem is:
w = 31,536,000

f1, =—14.7334, f;3 =145.266, fo3 =80.0, f,, =105.2666, f3, = 25.2666

6, =0,0, =1.4733, 03 =—14.5267, 6, = -19.58

g; =130.5331, g, = 200, g3 = 69.4669

Because Zypper =11,000,000+w =11,000,000 +31,536,000 = zjqe; = 42,536,000, the optimal solution is

obtained which show that lines 2-4 and 3-4 can satisfy the system curtailment requirement under the
steady state and any single-line outages.

54



8. Further Reading

M. Shahidehpour, H. Yamin and Z.Y. Li, Market Operations in Electric Power Systems, John Wiley
&Sons, Inc., New York, 2002.

M. Shahidehpour and M. Marwali, Maintenance Scheduling in Restructured Power Systems, Kluwer
Academic Publishers, Norwell, Massachusetts, 2000.

A. Monticelli, M. Pereira and S. Granville, “Security-Constrained Optimal Power Flow with Post-
Contingency Corrective Rescheduling,” IEEE Trans. on Power Systems, Vol. 2, No. 2, pp.175-182,
Feb. 1987.

AM. Geoffrion, "Generalized Benders Decomposition,” Journal of Optimization Theory and
Applications, Vol. 10, no.4, pp. 237-261, 1972.

J. F. Benders, “Partitioning Methods for Solving Mixed Variables Programming Problems,”
Numerische Mathematik, Vol. 4, pp. 238-252, 1962.

55



	Primal subproblem (SP1)
	Hours
	Table 6.2 Generator Data for 3-bus System
	Table 6.3 Line Data for 3-bus System
	Table 6.4 Load Data


	7. Generation Resource Planning
	Table 2 Existing Generator Data for 3-bus System
	Table 3 Candidate Generator Data for 3-bus System
	Table 4 Load Data (MW)
	Table 5 Line Data for 3-bus System


	8. TRANSMISSION PLANNING
	Table 1 Existing and candidate line Data for the 4-bus Syste
	Table 2 Generator Data for the 4-bus System
	Table 3 Load Data (MW)
	Table 4 Existing and candidate line Data for the 4-bus Syste
	Table 5 Generator Data for the 4-bus System
	Table 6 Load Data (MW)



