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APPENDIX 

A. Proof of Theorem 1  

Theorem 1: The proposed unified Benders cuts are valid 

because they do not eliminate the optimal solution for the 

original problem (4a)-(4d). 

Proof: The original problem (4a)-(4d) is equivalent to: 
Tmin


 

x
a x                                                    

s.t.    A x d                                                

,i i i ii i i   ++ B x eD zC y                         

{0,1 ,} iK

i i z                                       

which also achieves the same optimal solution as that of (4a)-

(4d).  

Let x  be the optimal solution for x . For each unified dual 

subproblem parameterized by x , the optimal solution ( iμ , iω ) 

must satisfy the following inequality: 
TT( ) ,0i i i i i  − +  e B x μ 1 ω  
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.  

Otherwise, the objective function of the primal unified 

subproblem achieves a positive optimal value. Hence, either the 

requested power exchanges violate limitations in the microgrid 

operation or the microgrid operation cost approximated by DSO 

is not accurate, which violates the optimality of x . 

Let ( ˆ
iμ , ˆ

iω ) be any set of coefficients in the unified Benders 

cuts generated at previous iterations such that ( ˆ
iμ , ˆ

iω ) is an 

optimal solution of the pertinent unified dual subproblem. As 

feasible regions of iQ  and iO remain the same in all iterations,  

( ˆ
iμ , ˆ

iω ) is also a feasible solution for the unified dual 

subproblem when the tentative solution is x . Given ( iμ , iω ) 

is the optimal solution of the unified dual subproblem, we have: 
TT T T( ) ,,) ( ),(i i i i i i i i i i i ii−      +  − +  e B x μ 1 ω e B x μ 1 ω μ ν ωQ O  

which further implies: 
T TT T0 ( ) ( ) ( )ˆ ˆˆ ˆ, ,i i i i i i i i i i

      − +  − + e B x μ 1 ω e B x μ 1 ω μ ω  

Hence, any unified Benders cut in the following form does not 

eliminate x : TT ˆ( ˆˆ ˆ0 (, , ,) )i i i i i i i  − +   e B x μ 1 ω μ ω . 

Similarly, let ( iy , iz ) be the optimal solution for ( iy , iz ) such 

that ( iy , iz ) is also the optimal solution of the unified primal 

subproblem with the following constraint satisfied under x  

(when all slack variables are zero): ,i i ii i i i   + − y D BzC e x  

which means ( iy , iz ) is not affected as long as x is not 

eliminated. In conclusion, the proposed unified Benders cuts do 

not eliminate the optimal solution of the original problem (4a)-

(4d). 

B. Complete Proposed Iterative Solution Process 

Here we summarize the iterative solution steps based on 

modified Benders decomposition as follows: 

Step 1:  Initialize (by DSO). Formulate the initial master 

problem (9a)-(9b) without any additional cutting planes. 

Step 2:  Solve the master problem (by DSO). Solve (9a)-(9c) 

with newly-generated unified Benders cuts and feasibility 

restoration cuts (if any) and update the optimal solution ˆ x for 

interconnection network operations. 

Step 3:  Receive the master problem solution (in parallel by all 
MCs). If there is a new DSO solution ˆ x , go to Step 4; otherwise, 
stay in Step 3. 
Step 4:  Solve the unified dual subproblem (in parallel by all 
MCs). Solve (13a) with ˆ x and update the optimal solution ( ˆ

iμ ,

ˆ
iω ) to form the unified Benders cut (13b). If *

,D iF achieves a 

positive value, go to Step 6; otherwise, go to Step 5.  

Step 5:  Solve the feasibility restoration subproblem (in parallel 

by all MCs). Solve (14a)-(14c) with ˆ x and update the optimal 

solution ( ˆ
iy , ˆ

iz ). If *

,F iF achieves a positive value, generate the 

feasibility restoration cut (14i). 

Step 6:  Return cutting planes (in parallel by all MCs). If there 

exist newly-generated cutting planes, pass them to DSO; 

otherwise, go back to Step 3. 

Step 7:  Check convergence (by DSO). If there exists any new 

cutting plane provided by MCs, go back to Step 2; otherwise, 

terminate the iteration and output ˆ x and ( ˆ
iy , ˆ

iz ) as the optimal 

operations for the interconnection network and microgrid i           

( i ), respectively. 

C. Proof of Theorem 2 

Theorem 2: The proposed iterative solution process based on 

modified Benders decomposition converges to the optimal 

solution of the original problem (4a)-(4d) in finite iterations. 

Proof: First, we prove that the proposed solution process 

terminates in finite iterations. At each iteration, each MC 

evaluates the feasibility of the tentative master problem solution

ˆ x and checks it against the unified Benders cut (13b). If it 

violates (13b), then (13b) alone reduces the feasible region of 

the original optimization problem by excluding ˆ x from  

interconnection network operations; otherwise, the feasibility 

restoration cut (14i) is generated to exclude ˆ x from the feasible 

region. Thus, the feasible region gradually shrinks as the 

iteration continues. Given that the feasible region is finite, the 

solution process would eventually be terminated. 

Next, we prove that not all generated cutting planes exclude 

the optimal solution of the original problem (4a)-(4d). We have 

already proved in Theorem 1 that unified Benders cuts do not 

eliminate the optimal solution. Similarly, we prove feasibility 

restoration cuts do not eliminate the optimal solution. Again, let 
x  be the optimal solution for x  in the original optimization 

problem such that x is always a feasible solution of the 

feasibility restoration subproblem (14a)-(14c). Then for any 

infeasible ˆ x , we have *

,
ˆ ˆ( , ) min ( ) ,,i i F i iF


      =

x
x x x x . 

Accordingly, any feasibility restoration cut in the following 

form does not eliminate x : *

,
ˆ( , ) ,i F i iF  x x . Let ( iy , iz ) be 

the optimal solution for ( iy , iz ). We conclude ( iy , iz ) is not 

affected as long as x is not eliminated. Hence, feasibility 

restoration cuts do not eliminate the optimal solution of the 

original problem. 

Last, we prove that the optimal solution to the original 

problem can be reached by the proposed iterative solution 

method. Since the optimal solution to the original problem 

satisfies master problem constraints, the master problem is a 

relaxation of the original problem in finding the optimal 

solution for x . Let x be the optimal solution of the master 

problem when the iterative process is terminated. Here, x is also 

a feasible solution for x in the original problem because x
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satisfies all master problem constraints and corresponds with  

no feasibility violations in feasibility restoration subproblems. 

In fact, x is the optimal solution for the relaxed version of the 

original problem (i.e., master problem) so that x is the optimal 

solution for x in the original problem. Given x , the optimal 

solution for each set of ( iy , iz ) is easily found by solving the 

feasibility restoration subproblem. In conclusion, this theorem 

is proved. 

D. Test System Configuration and Results 

1) Test System Configuration 

Base values of power and voltage magnitude are set at 1 

MVA and 4.16 kV. Bus 1 interfaces with the utility grid which  

has a fixed voltage magnitude of 1.0 p.u, while other bus 

voltage magnitudes are limited to be between 0.9 p.u. and 1.1 

p.u. Buses 83, 88, 113, and 117 are equipped with SVCs, while 

six microgrids are connected to the distribution feeder via Buses 

7, 50, 58, 96, 104 and 121. We consider six time intervals for 

operation, when conventional DGs are assumed to be initially 

OFF. The load curtailment costs are unified at 500 $/MWh at 

all buses throughout the operation horizon. Fig. A.1 shows the 

topology of the modified IEEE 123-bus test system. Table A.I 

lists the detailed configurations of SVCs. Tables A.II, A.III and 

A.IV list characteristics of conventional DGs, renewables-

based DGs, and ESSs in the six microgrids, respectively. Bus 

loads and power outputs of renewable DGs vary uniformly with 

time. The utility energy price, bus load, and renewable DG 

power forecasts are obtained by multiplying scalars in Table 

A.V with corresponding nominal values.  

2) Numerical Experiment Results 

Fig. A.2 shows the iterative communications between DSO 

and MCs for realizing their leader-follower partnership. Table 

A.VI lists the detailed power outputs of energy generation 

resources in all microgrids over the entire operation horizon. 

Fig. A.3 shows the relaxation errors of converged branch flow 

solutions for using the modified Benders decomposition. Fig. 

A.4 shows the convergence of bus voltage magnitudes in the 

local utility grid which satisfies the voltage security 

requirements. Figs. A.5 and A.6 show real and reactive power 

exchanges between microgrids and the local utility grid, 

respectively. 
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Fig. A.1 Modified IEEE 123-bus test system 

TABLE A.I 

SVC PARAMETERS 

Bus Output Range (kVar) Bus
 

Output Range (kVar) 

3 [-300, 300] 113 [-200, 200] 

88 [-300, 300] 117 [-400, 400] 

TABLE A.II 

PARAMETERS OF CONVENTIONAL DGS 

Bus 
Production  

Cost ($/kWh) 
Start-Up  

Cost ($) 

Power Output Range Ramping 

(kW) Real (kW) Reactive (kVar) 

7 0.05 10 [20, 100] [-50, 50] 50 

50 0.08 5 [30, 150] [-75, 75] 45 

58 0.04 10 [50, 150] [-50, 100] 80 

96 0.055 10 [20, 120] [-10, 50] 50 

104 0.085 10 [10, 80] [-20, 50] 40 

121 0.045 10 [20, 120] [-25, 75] 50 

TABLE A.III 

RENEWABLES DG PARAMETERS 

Bus 

Forecast 

Output 

(kW) 

Min 

Power 

Factor 

Bus
 Forecast 

Output (kW) 

Min Power 

Factor 

7 30 0.9 96 80 0.9 

50 50 0.95 104 40 0.85 

58 80 0.85 121 60 0.9 

TABLE A.IV 

ESS PARAMETERS 

Bus 
Max Dis/charging 

Power (kW) 

Energy Level (kWh) Dis/charging 

Efficiency Min Max Initial 

7 40/40 20 80 60 0.9/0.9 

50 40/40 20 100 40 0.85/0.85 

58 35/35 30 90 30 0.9/0.9 

96 60/60 40 160 80 0.95/0.95 

104 40/40 20 80 40 0.9/0.9 

121 30/30 40 120 60 0.9/0.9 

TABLE A.V 

SCALARS OF OPERATING CONDITIONS  

Element t=1 t=2 t=3 t=4 t=5 t=6 

Price 0.77 1 1.16 0.9 1.30 0.77 

Load 0.85 0.95 0.9 1 0.95 0.85 

Renewables 1 1.2 0.6 1 1.4 1 

Collaboration Plans Cutting Planes

DSO

MC 1 MC 2 MC 3

Communication Network

...

 

Fig. A.2 Data exchanges between DSO and MCs 

TABLE A.VI 

POWER OUTPUTS OF MICROGRID RESOURCES 

Microgrid 
Power Output (kW+jkVar) 

t=1 t=2 t=3 t=4 t=5 t=6 

1 

DG 50+j50 100+j50 100+j50 100+j50 100+j50 50+j50 

RE 30+j14.5 36+j17.4 18+j8.7 30+j14.5 42+j20.3 30+j14.5 

ESS -22.2 0 40 -32.1 40 0 

2 

DG 45+j75 90+j75 135+j75 150+j75 150+j75 150+j75 

RE 50+j16.4 60+j19.7 30+j9.9 50+j16.4 70+j23 50+j16.4 

ESS -40 0 5.9 0 40 0 

3 

DG 80+j100 150+j100 150+j100 150+j100 150+j100 150+j100 

RE 80+j49.6 96+j59.5 48+j29.7 80+j49.6 112+j69.4 80+j49.6 

ESS -35 0 21.7 -35 35 0 

4 

DG 50+j50 100+j50 120+j50 120+j50 120+j50 120+j50 

RE 80+j38.7 96+j46.5 48+j23.2 80+j38.7 112+j54.2 80+j38.7 

ESS -60 0 60 -30.9 60 0 

5 

DG 0 0 0 0 0 0 

RE 40+j24.8 48+j29.7 24+j14.9 40+j24.8 56+j34.7 40+j24.8 

ESS -40 0 40 -36.5 40 0 

6 

DG 50+j75 100+j75 120+j75 120+j75 120+j75 120+j75 

RE 60+j29.1 72+j34.9 36+j17.4 60+j29.1 84+j40.7 60+j29.1 

ESS -30 0 30 -21.9 30 0 
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Fig. A.3 Second-order cone relaxation error 

 

Fig. A.4 Voltage magnitude variations (p.u.) 

 

Fig. A.5 Optimal real power export of individual microgrids 

 
Fig. A.6 Optimal reactive power export of individual microgrids

 


