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1 Data for Six-bus System

The one-line diagram is shown in Fig.1. The unit data and line data are shown in Table 1 and Table 2,
respectively. Table 3 presents the load and uncertainty information. Column “Base Load” shows the hourly
forecasted load. Assume that the load distributions are 20%, 40%, and 40% for Bus 3, Bus 4, and Bus 5,
respectively. ū1,t and ū3,t in Table 3 are the bounds of the uncertainties at Bus 1 and Bus 3, respectively.
The uncertainty bounds at other buses are 0.
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Figure 1: One-line Diagram for 6-bus system

Table 1: Unit Data for the 6-bus System

# Pmin Pmax P0 a b c Ru Rd Cu Cd T on T off T0

1 100 220 120 0.004 13.5 176.9 24 24 180 50 4 4 4
2 10 100 50 0.001 32.6 129.9 12 12 360 40 3 2 3
6 10 20 0 0.005 17.6 137.4 5 5 60 0 1 1 −2

Pmin,Pmax,P0: min/max/initial generation level (MW);
fuel cost ($): aP 2 + bP + c ;
Ru,Rd: ramping up/down rate (MW/h);
Cu,Cd: startup/shutdown cost ($);
T on,T off,T0: min on/min off/initial time (h)
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Table 2: Line Data for the 6-bus System

from 1 1 2 5 3 2 4
to 2 4 4 6 6 3 5
x(p.u.) 0.17 0.258 0.197 0.14 0.018 0.037 0.037
capacity(MW) 200 100 100 100 100 200 200

Table 3: Load and Uncertainty Data for the 6-bus System (MW)

Time (h) Base Load ū1,t ū3,t Time (h) Base Load ū1,t ū3,t

1 175.19 1.09 0.29 13 242.18 19.68 5.25
2 165.15 2.06 0.55 14 243.6 21.32 5.68
3 158.67 2.98 0.79 15 248.86 23.33 6.22
4 154.73 3.87 1.03 16 255.79 25.58 6.82
5 155.06 4.85 1.29 17 256 27.2 7.25
6 160.48 6.02 1.6 18 246.74 27.76 7.4
7 173.39 7.59 2.02 19 245.97 29.21 7.79
8 177.6 8.88 2.37 20 237.35 29.67 7.91
9 186.81 10.51 2.8 21 237.31 31.15 8.31
10 206.96 12.94 3.45 22 232.67 31.99 8.53
11 228.61 15.72 4.19 23 195.93 28.16 7.51
12 236.1 17.71 4.72 24 195.6 29.34 7.82

Table 4: Marginal Costs at Different Generation Levels ($/MWh)

Gen. 1 Gen. 2 Gen. 3

¯
Pw1 P̄w1 mar. cost

¯
Pw2 P̄w2 mar. cost

¯
Pw3 P̄w3 mar. cost

100 124 14.396 10 28 32.638 10 12 17.71
124 148 14.588 28 46 32.674 12 14 17.73
148 172 14.78 46 64 32.71 14 16 17.75
172 196 14.972 64 82 32.746 16 18 17.77
196 220 15.164 82 100 32.782 18 20 17.79

2 Traditional SCUC Formulation

The objective of the ISOs/RTOs is to minimize the total operation cost to supply the load. It can be
formulated as

min
∑
i

∑
t

CPi (Pi,t) + CIi (Ii,t), (22a)

where CPi (Pit) is the fuel cost function in output level Pit for unit i, and CIi (Iit) is the cost function related
to the unit status Iit. The objective function (22a) is subject to system generation-load balance constraint,
as formulated in (22b), where the total generation equals the total load.∑

i

Pi,t =
∑
m

dm,t,∀t, (22b)

where dm,t is the load demand at bus m at time t. The power loss is ignored in this paper. The transmission
line flow constraint is modeled as

−Fl ≤
∑
m

Γl,m

 ∑
i∈G(m)

Pi,t − dm,t

 ≤ Fl,∀l, t. (22c)
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In the following context, we also denote the net power injection as P inj
m,t.

P inj
m,t :=

∑
i∈G(m)

Pi,t − dm,t (23)

The power generation is subject to the unit capacity limits (24a), and unit ramping up/down limits (24b-24c).

Ii,tP
min
i ≤ Pi,t ≤ Ii,tPmax

i ,∀i, t (24a)

Pi,t − Pi,(t−1) ≤ rui (1− yi,t) + Pmin
i yi,t,∀i, t (24b)

−Pi,t + Pi,(t−1) ≤ rdi (1− zi,t) + Pmin
i zi,t,∀i, t (24c)

where Ii,t, yi,t, and zi,t are the indicators of the unit being on, started-up, and shutdown, respectively. Units
also respect the minimum on/off time constraints which are related to these binary variables [1].

3 Detailed Formulation for Problem (RSCUC)

(RSCUC) min
(x,y,z,I,P )∈F

∑
t

∑
i

(
CPi (Pi,t) + CIi (Ii,t)

)
s.t. (22b), (22c), (24a)− (24c),minimum on/off time limit

and

F :=
{

(x, y, z, I, P ) : ∀ε ∈ U ,∃∆P such that∑
i

∆Pi,t =
∑
m

εm,t,∀t, , (25a)

Ii,tP
min
i ≤ Pi,t + ∆Pi,t ≤ Ii,tPmax

i ,∀i, t (25b)

−Rdi (1− zi,t+1) ≤ ∆Pi,t ≤ Rui (1− yi,t),∀i, t (25c)

∆P inj
m,t =

∑
i∈G(m)

∆Pi,t − εm,t,∀m, t (25d)

−Fl ≤
∑
m

Γl,m(P inj
m,t + ∆P inj

m,j) ≤ Fl, ,∀l, t
}
. (25e)

The basic idea of the above model is to find a robust UC and dispatch for the base-case scenario. The
UC and dispatch solution are immunized against any uncertainty ε ∈ U . When uncertainty ε occurs, it
is accommodated by the generation adjustment ∆Pi,t (25a). Generation dispatch is also enforced by the
capacity limits (25b). Equation (25c) models the ramping rate limits of generation adjustment ∆Pi,t. In
fact, the right and left hand sides of (25c) can correspond to a response time ∆T , which is similar to the
10-min or 30-min reserves in the literatures [2]. (25e) stands for the network constraint after accommodating
the uncertainty.

4 Detailed Formulation for Problem (MP) and (SP)

(MP) min
(x,y,z,I,P,∆P )

∑
t

∑
i

(
CPi (Pi,t) + CIi (Ii,t)

)
S.T. (22b), (22c), (24a)-(24c), minimum on/off time limit∑
i

∆P ki,t =
∑
m

εkm,t,∀t,∀k ∈ K (26a)

Ii,tP
min
i ≤ Pi,t + ∆P ki,t ≤ Ii,tPmax

i ,∀i, t,∀k ∈ K (26b)

∆P ki,t ≤ Rui (1− yi,t),∀i, t,∀k ∈ K (26c)
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−∆P ki,t ≤ Rdi (1− zi,t+1),∀i, t,∀k ∈ K (26d)

−Fl ≤
∑
m

Γl,m(P inj
m,t + ∆P inj,k

m,t ) ≤ Fl,∀k ∈ K,∀l, t (26e)

∆P inj,k
m,t =

∑
i∈G(m)

∆P ki,t − εkm,t,∀m, t,∀k ∈ K, (26f)

and

(SP)Z:= max
ε∈U

min
(s+,s−,∆P )∈R(ε)

∑
m

∑
t

(s+
m,t + s−m,t) (27a)

R(ε) :=
{

(s+, s−,∆P ) : (27b)∑
i

∆Pi,t =
∑
m

(εm,t + s+
m,t − s−m,t),∀m, t (27c)

−Fl ≤
∑
m

Γl,m

(
P inj
m,t + ∆P inj

m,t

)
≤ Fl,∀l, t (27d)

∆P inj
m,t =

∑
i∈G(m)

∆Pi,t − (εm,t + s+
m,t − s−m,t) (27e)

s+
m,t, s

−
m,t ≥ 0,∀m, t (27f)

(25b), (25c)
}

where K is the index set for uncertainty points ε̂ which are dynamically generated in (SP) with iterations.
It should be noted that ε̂k is the extreme point of U . Variable ∆P ki,t is associated with ε̂k. The objective

function in (SP) is the summation of non-negative slack variables s+
m,t and s−m,t, which evaluates the viola-

tion associated with the solution (x, y, z, I, P ) from (MP). s+
m,t and s−m,t are also explained as un-followed

uncertainties (generation or load shedding) due to system limitations.

5 Lagrangian Function for Problem (RSCED)

L(P,∆P, λ, α, β, η)

=
∑
t

∑
i

CPi (Pi,t) +
∑
t

λt

(∑
m

dm,t −
∑
i

Pi,t

)
+
∑
t

∑
i

(
β̄i,t(Pi,t − Îi,tPmax

i ) +
¯
βi,t(Îi,tP

min
i − Pi,t)

)
+
∑
t

∑
i

(
ᾱi,t

(
Pi,t − Pi,t−1 − rui (1− ŷi,t)− Pmin

i,t ŷi,t

)
+

¯
αi,t

(
Pi,t−1 − Pi,t − rdi (1− ẑi,t)− Pmin

i,t ŷi,t

))
+
∑
t

∑
l

(
η̄l,t

(∑
m

Γl,mP
inj
m,t − Fl

)
−

¯
ηl,t

(∑
m

Γl,mP
inj
m,t + Fl

))
+
∑
k∈K

∑
t

λkt

(∑
m

εkm,t −
∑
i

∆P ki,t

)
+
∑
k∈K

∑
t

∑
i

(
β̄ki,t(Pi,t + ∆P ki,t − Îi,tPmax

i ) +
¯
βki,t(Îi,tP

min
i − Pi,t −∆P ki,t)

)
+
∑
k∈K

∑
t

∑
i

(
ᾱki,t

(
∆P ki,t −Rui (1− ŷi,t)

)
−

¯
αki,t

(
∆P ki,t +Rdi (1− ẑi,t)

))
+
∑
k∈K

∑
t

∑
l

(
η̄kl,t

(∑
m

Γl,m(P inj
m,t + ∆P inj,k

m,t )− Fl
)
−

¯
ηkl,t

(∑
m

Γl,m(P inj
m,t + ∆P inj,k

m,t ) + Fl

))
(28)

6 Proofs for lemmas and theorems

6.1 Proof of Lemma 1

Proof. Consider ε̂km,t > 0, πu,k
m,t < 0. With a small perturbation δ > 0 to ε̂km,t, we replace ε̂km,t with ε̂km,t − δ

in (RSCED). As the πu,km,t < 0 , then the optimal value to problem (RSCED) increases. It means that there
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are violations for the original optimal solution Pi,t to problem (RSCED) with ε̂km,t − δ. Hence, the optimal

solution Pi,t to problem (RSCED) cannot be immunized against the uncertainty ε̂km,t − δ. It contradicts

with the robustness of the solution Pi,t. Therefore, if ε̂km,t > 0, then πu,k
m,t ≥ 0. Similarly, if ε̂km,t < 0, then

πu,k
m,t ≤ 0.

6.2 Proof of Lemma 2

Proof. Assume i ∈ G(m), according to the KKT condition

∂L(P,∆P, λ, α, β, η)

∂∆P ki,t
= 0, (29)

we have
β̄ki,t −

¯
βki,t + ᾱki,t − ¯

αki,t − λkt +
∑
l

(η̄kl,t −
¯
ηkl,t)Γl,m = 0. (30)

Then (17) holds. If πu,k
m,t > 0, then β̄ki,t + ᾱki,t > 0 as β̄ki,t,

¯
βki,t, ᾱ

k
i,t, and

¯
αki,t are non-negative. According to

the complementary conditions for (7b) and (7d), at least one of (7b) and (7d) is binding. Hence, ∆P ki,t =

min{Îi,tPmax
i − Pi,t, Rui (1− ŷi,t)}. Similarly, the other equation holds when πu,k

m,t < 0.

6.3 Proof of Theorem 1

Proof. The congestion fee at t is∑
m

(
πe
m,tdm,t −

∑
i∈G(m)

πe
m,tPi,t

)
=
∑
m

πe
m,tP

inj
m,t

=
∑
m

∑
l

Γl,m

(
η̄l,t +

∑
k∈K

η̄kl,t −
¯
ηl,t −

∑
k∈K¯

ηkl,t

)
P inj
m,t

=
∑
l

(
η̄l,t +

∑
k∈K

η̄kl,t +
¯
ηl,t +

∑
k∈K¯

ηkl,t

)
(Fl −∆fl,t)

The first equality holds following the definition of net power injection. The second equality holds according
to (8) and

∑
m P

inj
m,t = 0. The third equality holds following (19). The sign change of

¯
ηl,t and

∑
l
¯
ηkl,t

in the third equation is because of the definition of power flow direction. The credits to FTR holders∑
(m→n)(π

e
m,t − πe

n,t)FTRm→n can be rewritten as

∑
m→n

∑
l

(
(Γl,n − Γl,m)

(
η̄l,t −

¯
ηl,t +

∑
k∈K

(
η̄kl,t −

¯
ηkl,t
)))

FTRm→n

Two cases are considered as follows.

1. If ∆fl,t is non-zero, then η̄l,t and
¯
ηl,t must be zeros. In this case, the congestion fee related to l at t is∑

k∈K

(η̄kl,t +
¯
ηkl,t)(Fl −∆fl,t). (31)

And the credits to FTR holders are∑
(m→n)

(πe
m,t − πe

n,t)FTRm→n

=
∑

(m→n)

∑
l

∑
k∈K

(Γl,n − Γl,m)(η̄kl,t −
¯
ηkl,t)FTRm→n

≤
∑
l

∑
k∈K

(η̄kl,t +
¯
ηkl,t)Fl
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The first equality holds following η̄l,t =
¯
ηl,t = 0. The inequality is true as the amount of FTRm→n

respects

−Fl ≤
∑
m→n

(Γl,m − Γl,n)FTRm→n ≤ Fl.

according to the SFT for FTR market [3–5]. Hence, the maximal credit to FTR holders is
∑
k∈K(η̄kl,t+

¯
ηkl,t)Fl for line l at t. Comparing with the congestion fee in (31), the FTR underfunding is (20).

2. If ∆fl,t is zero, the congestion fee related to l at t is

(η̄l,t +
¯
ηl,t)Fl +

∑
k∈K

(η̄kl,t +
¯
ηkl,t)Fl,

which is the same as the maximal FTR credit. Hence, FTR underfunding is 0 at t for l.

6.4 Proof of Theorem 2

Proof. According to Theorem 1, the FTR underfunding value is (20). Therefore, we need to prove that the
money collected from uncertainty sources can cover the FTR underfunding and credits to generation reserve.

Without loss of generality, we consider the payment collected from uncertainty sources at time t for ε̂k∑
m

πu,k
m,tε̂

k
m,t

=
∑
m

(
λkt −

∑
l

Γl,m
(
η̄kl,t −

¯
ηkl,t
) )
ε̂km,t

=
∑
i

∆P ki,tλ
k
t −

∑
m

∑
l

Γl,m
(
η̄kl,t −

¯
ηkl,t
)

(
∑

i∈G(m)

∆P ki,t)

+
∑
l

(η̄kl,t +
¯
ηkl,t)∆fl,t

=
∑
m

∑
i∈G(m)

πu,km,t∆P
k
i,t +

∑
l

(η̄kl,t +
¯
ηkl,t)∆fl,t

=
∑
i

πu,kmi,t∆P
k
i,t +

∑
l

(η̄kl,t +
¯
ηkl,t)∆fl,t

The first equality holds according to (9). According to (7a), (7f), and (7g), the
∑
m

∑
l Γl,mη̄

k
l,tε̂

k
m,t in

the second line can be rewritten as∑
m

∑
l

Γl,mη̄
k
l,t

( ∑
i∈G(m)

(∆P ki,t + Pi,t)− dm,t
)
−
∑
l

η̄kl,tFl

=
∑
m

∑
l

Γl,mη̄
k
l,t

∑
i∈G(m)

∆P ki,t +
∑
l

η̄kl,t

(∑
m

Γl,mP
inj
m,t − Fl

)
=
∑
m

∑
l

Γl,mη̄
k
l,t(

∑
i∈G(m)

∆P ki,t) +
∑
l

η̄kl,t∆fl,t

Hence, the second equality holds. The third equality holds from (9). Therefore,∑
m

∑
t

Ψm,t =
∑
i

∑
t

ΘG
i,t +

∑
l

∑
t

ΘT
l,t,

the payment collected from uncertainty sources can cover all the credits to the generation and transmission
reserves.
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6.5 Proof of Competitive Equilibrium

Proof. Pi,t and (Qup
i,t , Q

down
i,t ) are coupled by constraints (15) and (16). According to (17), we can rewrite

generation reserve credit as

πu,up
m,t Q

up
i,t + πu,down

m,t Qdown
i,t =

∑
k∈K

πu,k
m,t∆P

k
i,t

=
∑
k∈K

(β̄ki,t −
¯
βki,t + ᾱki,t − ¯

αki,t)∆P
k
i,t

=
∑
k∈K

(
β̄ki,t(Îi,tP

max
i − Pi,t) +

¯
βki,t(Pi,t − Îi,tPmin

i )

+ᾱki,t(R
u
i (1− ŷi,t)) +

¯
αki,tR

d
i (1− ẑi,t+1)

)
(32)

Substituting (32) into problem (PMPi), we can decouple Pi,t and (Qup
i,t , Q

down
i,t ). In fact, we also get all terms

related to Pi,t in Lagrangian L(P, λ, α, β, η) for problem (RSCED). Since the problem (RSCED) is linear

programming problem. Therefore, the saddle point P̂i,t, which is the optimal solution to (RSCED), is also
the optimal solution to (PMPi). Consequently, unit i is not inclined to change its generation output level
as it can obtain the maximum profit by following the ISO’s dispatch instruction P̂i,t. Therefore, dispatch

signal P̂i,t and price signal (πe
m,t, π

u,k
m,t) constitute a competitive partial equilibrium [6].

7 Stoarge Model in Case 2 for IEEE 118-Bus

Et = Et−1 + ρdPDt + ρcPCt ,∀t
0 ≤ Et ≤ Emax,∀t
0 ≤ −PDt ≤ IDt RD,∀t
0 ≤ PCt ≤ ICt RC ,∀t
IDt + ICt ≤ 1,∀t
ENT

= E0,

where Et denotes the energy level, PDt and PCt represent the discharging and charging rates, and IDt and
ICt are the indicators of discharging and charging. As the UMP is the major concern in this section, we use
simplified parameters for storage. The discharging efficiency ρd and charging efficiency ρc are set to 100%.
The capacity Emax and initial energy level E0 are set to 30 MWh and 15 MWh, respectively. The maximal
charging rate RD and discharging rate RC are set to 8 MW/h.
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