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   Abstract—This paper develops optimal bidding strategies based 
on hourly unit commitment in a generation company (GENCO) 
which participates in energy and ancillary services markets. The 
price-based unit commitment problem with uncertain market 
prices is modeled as a stochastic mixed integer linear program. 
The market price uncertainty is modeled using the scenario 
approach, Monte Carlo simulation is applied to generate 
scenarios, scenario reduction techniques are applied to reduce 
the size of the stochastic price-based unit commitment problem, 
and postprocessing is applied based on marginal cost of 
committed units to refine bidding curves. The financial risk 
associated with market price uncertainty is modeled using 
expected downside risk which is incorporated explicitly as a 
constraint in the problem. Accordingly, the proposed method 
provides a closed-loop solution to devising specific strategies for 
risk-based bidding in a GENCO. Illustrative examples show the 
impact of market price uncertainty on GENCO’s hourly 
commitment schedule and discuss the way GENCOs could 
decrease financial risks by managing expected payoffs. 
  
Index Terms— Risk, bidding strategy, stochastic price-based unit 
commitment, mixed integer programming 

I.  NOMENCLATURE 
Variables: 

()EDR    Expected downside risk for a given target profit 
i    Denote a thermal unit 

) (I     Unit status indicator with 1 means on and 0   
     means off 

) (dI  Indicator for providing non-spinning reserve 
when off 

()F  Unit’s consumption of fuel for a scenario 
m    Segment index 
n    Denote a node in the scenario tree 

'n   Denote a node different from node n  in the 
scenario tree 

) (uN    Non-spinning reserve of a unit when on 
) (dN    Non-spinning reserve of a unit when off 
) (mp   Generation of segment m  in linearized heat       

curve 
) (P    Generation of a unit 

) (PF    Payoff for a scenario 
) (R     Spinning reserve of a unit 

()RISK   Downside risk for a scenario 
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s      Denote a scenario 
t      Hour index 

) (TP    Total generation offered to (positive value) or 
      purchased from (negative value) the market by 
a      unit 

) (TN    Total non-spinning reserve offered by a unit 
) (mv    Indicate whether a unit is started at segment  

     m of the startup cost curve, 1 means started at 
     segment m  and 0 means off 

) (x     Auxiliary binary variable for one scenario 
) (z     Shutdown indicator 

 
Constants: 

) (mb      Slope of segment m  in linearized heat curve 
) (f      Heat rate at the minimum generating capacity 

) (fρ     Fuel price of a unit 

) (HN     Set of nodes for an hour 
) (MSR    Maximum sustained ramp rate (MW/min)  

      for a unit 
) (NS     Number of segments for the startup fuel curve 

) (NSF    Number of segments for the piece-wise   
      linearized heat rate curve 

) (0P     Bilateral contract of a unit 
) (0SG    Income from bilateral contract of a unit 

) (gP , ) (gP  Minimum/maximum generating capacity 

) (QSC    Quick start capacity 
) (RU , ) (RD  Ramping up/down limit of a unit 
) (SD     Shutdown cost of a unit 

) (mSF     Startup fuel if started at segment m  
) (SN     Set of nodes for a scenario 

0z     Targeted profit 
()π     Probability for a scenario 

) (gρ     Market price for energy 

) (srρ     Market price for spinning reserve 
) (nrρ     Market price for non-spinning reserve 

II.  INTRODUCTION 
EVISING a good bidding strategy is very crucial for a 
GENCO to maximize its potential profit [1,2]. The 

approaches for developing bidding strategies could be 
categorized into: equilibrium models and non-equilibrium 
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models. Equilibrium models such as Supply Function 
Equilibrium and Cournot Equilibrium were widely applied for 
developing GENCOs’ bidding strategies and analyzing market 
power in energy markets [2]-[5]. However, unit constraints 
such as minimum on/off time, ramping limits, and startup cost 
were not considered in most of the equilibrium models 
because the existence of equilibria could not be proven when 
integer variables were used in those models. Accordingly, the 
simulated market equilibrium without the unit prevailing 
constraints could deviate largely from practical operation. 
Meanwhile, there may be some computational problems when 
equilibrium models are applied to a large system with many 
market participants. However, equilibrium models would be 
very important for analyzing the potential market power of a 
GENCO and the optimal bidding strategy of GENCOs with 
market power. 

There are several non-equilibrium approaches in the 
literature for developing optimal bidding strategies. For 
example, an ordinal optimization method was used in [6] to 
find the “good enough” bidding strategy for power suppliers. 
The basic idea was to use an approximate model for analyzing 
the impact of GENCO’s bidding strategies on market clearing 
price. A bidding model was proposed in [7] based on an 
economic principle known as cobweb theorem. The proposed 
model calculated the maximum bidding price and quantity by 
an iterative procedure using the GENCO’s residual demand 
curve. Deterministic price-based unit commitment (PBUC) 
was applied for developing bidding strategies in [1], [8]-[11]. 
However, the precision of market price forecasting could have 
a direct impact on PBUC solution. Due to electricity market 
dynamics, which could make it difficult to forecast market 
prices accurately, it would be very important to consider the 
market price uncertainty. 

There are several approaches to modeling the market price 
uncertainty. The first approach is to model directly the market 
price uncertainty. Without considering ancillary services, the 
stochastic unit commitment problem in a PoolCo market with 
uncertain market prices was solved using LR, stochastic 
dynamic programming, and Benders decomposition in [12]. 
However, the purpose of [12] was to develop policies 
including unit commitment and generation dispatch for each 
scenario instead of developing bidding strategies. The market 
price uncertainty was taken into consideration in [13] when 
developing optimal bidding strategies in multi-markets. The 
second approach is to model the uncertainty of residual 
demand curve. The uncertainty of residual demand curve was 
considered in [14] by applying the scenario approach to 
develop optimal bidding strategies for a GENCO. Benders 
decomposition was employed to solve the corresponding 
stochastic linear program. The third approach is to model the 
uncertainty of competitors’ bids and system loads. The 
uncertainty of competitors’ bids was modeled in [15] for 
developing optimal bidding strategies in energy market. 
Binary expansion approach was applied to transform the bi-
level optimization problem into a mixed integer linear 
program, and the resulting problem was solved by an MIP 
solver. In [13] and [14], unit commitment decisions were not 

considered and assumed to be given. Meanwhile, models in 
[13]-[15] were risk-neutral in the sense that the objective was 
to maximize expected payoffs. The optimal decision could 
expose the GENCO at a significant risk level because of the 
market price uncertainty. It would be very important for a 
GENCO to maximize its potential profit while keeping the 
involved risk at an acceptable level. 

There are several ways to model risks associated with a 
decision. A very common way is the mean-variance approach 
proposed in [16], which is the industry’s standard model in 
portfolio selection. In this approach, the risk is measured 
using the variance of the expected payoff and a utility function 
is devised by appending the variance of expected payoff into 
the original expected payoff function. The objective of a 
decision maker would be to maximize its utility function. In 
the case of stochastic integer program, this method is 
criticized for its computational intractability when appending 
a variance term in the objective function [17]. The value at 
risk (VaR) approach [1] was applied to analyze risk associated 
with a bidding strategy. However, an open-loop solution made 
it very difficult for a GENCO to modify its bidding strategy 
based on the risk level. Real option models and stochastic 
optimization techniques were applied in [18] to manage risk. 
A detailed overview of risk assessment method in energy 
trading was given in [19]. 

This paper proposes a risk-constrained bidding strategy for 
a GENCO to devise optimal bids in day-ahead energy market 
and ancillary services market. Our proposed method belongs 
to the non-equilibrium approach category. The problem is 
formulated as a stochastic mixed integer linear programming 
and solved by commercial mixed integer programming (MIP) 
solver. The tradeoff between maximizing expected payoff and 
minimizing risk due to the market price uncertainty is 
modeled explicitly by including the expected downside risk as 
a constraint. Accordingly, the proposed procedure provides a 
closed-loop solution to devising bidding strategy. Meanwhile, 
prevailing unit commitment constraints are considered. After 
solving the stochastic PBUC problem, postprocessing 
techniques based on marginal cost are applied to refine the 
bidding curves. Illustrative examples show the impact of 
market price uncertainty on commitment schedule of 
generators and a GENCO could significantly decrease the 
level of involved risk at the cost of reducing its expected 
payoff. 
 This paper is organized as follows: the stochastic PBUC 
problem is formulated in section III and the construction of 
bidding curve is shown in section IV. Section V models risk 
constraint. Illustrative examples and conclusions are provided 
in sections VI and VII, respectively.  

III.  STOCHASTIC PRICE-BASED UNIT COMMITMENT 
We devise bidding strategies simultaneously for energy and 
ancillary services markets. If ancillary services are cleared 
after the day-ahead energy market, we would apply the 
proposed method to submit energy bidding curves and execute 
the program again by plugging in day-ahead energy results. In 
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this way, the certainty of market clearing results in the day-
ahead energy market could enhance a GENCO’s profit. 

Market prices could be stated as locational marginal prices 
(LMPs) or uniform market clearing prices (MCPs) which 
depend on market rules in consideration. Our model could be 
applied to either case. As market price variables are 
represented by continuous probability distributions, it is very 
difficult, if not impossible, to solve the corresponding 
stochastic programming problem since integration over such 
variables are required explicitly or implicitly. To overcome 
this problem, we generally resort to approaches that could 
substitute the continuous market price variables with a set of 
discrete outcomes. Each possible discrete outcome of market 
price is called a scenario. We discuss next the approach for 
generating market price scenarios based on forecasted market 
prices. 

A. Scenario generation 
There are various approaches to generating scenarios for 
stochastic programming. Scenarios are commonly generated 
by sampling historical time series or statistical models such as 
time series or regression models. Time series models were 
applied to generate scenarios for prices in electricity markets 
in [13]. A nonlinear optimization problem was employed in 
[20] to generate scenario trees given the statistical properties 
of stochastic variables. A detailed literature review on 
scenario generation was presented in [21]. In this paper, the 
Monte Carlo simulation method is applied to generate 
scenarios. Market price and market price variance forecasts 
for energy and ancillary services are assumed to be calculated 
by applying techniques such as time series and artificial neural 
network [1]. Then, Monte Carlo simulation is executed M  
(i.e., a very large number) times to generate scenarios for 
market prices when the probability of each scenario is 
assumed to be M/1 .  

B. Scenario reduction 
If we execute Monte Carlo simulation 100,000 times, we 
would obtain 100,000 scenarios and the resulting stochastic 
program would be too large to solve. Accordingly, scenario 
reduction techniques are applied to reduce the number of 
scenarios in consideration while maintaining a good 
approximation of the statistical properties of market prices. 
The basic idea of scenario reduction is to eliminate a scenario 
with very low probability and bundle scenarios that are very 
close. Accordingly, scenario reduction algorithms determine a 
subset of scenarios and calculate probabilities for new 
scenarios such that the reduced probability measure is closest 
to the original probability measure in terms of a certain 
probability distance between the two measures [22], [23].  

After reducing and bundling scenarios, an example of the 
reduced scenario tree for a three-stage problem is shown in 
Fig.1. 
 

t = 1

t = 2

t = 3  
Fig. 1 Scenario tree for a three-stage stochastic problem 

A node in the scenario could have multiple successors but 
one ancestor at most. The node without any ancestor is called 
the root node and nodes without any successors are called 
leaves. A scenario is defined as a path in the scenario tree 
from the root node to a leave node. For a node n  in the 
scenario tree, we apply +n  to denote its predecessor. 
Meanwhile, we apply 0n  to denote the root node in the 
scenario tree. 

Since a small number of scenarios could result in a poor 
approximation, a tradeoff exists between problem precision 
and problem size. A practical way is to set the number of 
reduced scenarios when the objective function is not changing 
significantly or the relative distance between original 
scenarios and reduced scenarios is within an acceptable level 
[22], [23]. 

C. Objective function for a GENCO 
A GENCO intends to maximize its expected payoff as: 

)()(:max sPFs
s

∗∑π               (1) 

and the profit for scenario s  is: 
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Since all the information (i.e., unit status, price, generation, 
etc.) for hour t  is included in the set of nodes )(tHN  at that 
hour, we present the equations as a function of node n  instead 
of hour t . We present the startup cost as a function of startup 
fuel (MBtu), for modeling the consumption of constrained 
fuel, and shutdown cost as function of cost (dollars). 
However, we could also present the startup cost as a function 
of cost (dollars) instead of fuel (MBtu). The variation would 
not impact the proposed formulation. 

In this paper, we consider thermal units. However, other 
types of units such as combined-cycle, cascaded-hydro, and 
pumped-storage units could be included without much 
difficulty [11]. We discuss the various constraints for a 
GENCO as follows. 

D. Unit constraints 
A GENCO would make unit commitment decisions before 
submitting bids to the day-ahead market. Accordingly, the 
final unit commitment decision should be the same for all 
possible scenarios of market price. If a system operator, i.e., 
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an ISO or RTO, is responsible for commitment decisions, 
decisions could be different from one scenario to another. The 
unit-specific constraints were given in [11] such as minimum 
on/off time limits and time-varying startup costs. If the 
outcome of stochastic variables for a certain number of 
scenarios is the same, decision variables for those scenarios 
should also be the same. This is called nonanticipativity 
constraints [24]. For a stochastic program, there are two ways 
of expressing nonanticipativity constraints: scenario-based 
and node-based. In the scenario-based approach, 
nonanticipativity constraints are enforced explicitly [13] 
which introduce additional constraints and variables to the 
problem. In the node-based approach, constraints are 
formulated for each node instead of each scenario and 
nonanticipativity constraints are enforced implicitly as shown 
next. 
Ramping constraints: 

niRDniPniP
niRUniPniP
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∀≤−
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                     )(),(),(

     (3) 

Energy bilateral contracts for units: 
niniPniTPniP ,    ),(),(),( 0 ∀=−         (4) 

where positive ),( niTP  represents the generation offered to 
the market and negative ),( niTP  is the purchased generation 
from the market. 
 The market price for a higher quality reserve (spinning 
reserve) should be higher than that of a lower quality reserve 
(non-spinning reserve). However, this is not always observed 
in practical markets because of market inefficiencies. 
Accordingly, a general case of generating unit constraints for 
supplying energy and ancillary services in spot market is 
modeled in (5): 
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The fuel consumption of unit i  for scenario s  is calculated 
as: 
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Other constraints could be modeled similarly as shown in 
[11]. 

IV.  CONSTRUCTION OF BIDDING CURVE 
Ideally, a market price in real time should correspond to one 
scenario for the realization of possible market prices. In this 
sense, the generation obtained in section III is the optimal 
bidding quantity for a GENCO at the corresponding market 
price. Accordingly, price and generation pairs obtained in 
section III could be applied to construct a bidding curve [14], 

[15]. In practical electricity markets, a market participant 
would submit a piecewise non-decreasing bidding curve such 
as that in Fig. 2.  

A. Non-decreasing conditions 
In the stochastic integer program formulated in section III, 
scenarios are treated independently. However, the hourly price 
and generation quantity pairs may not be monotonically 
increasing. Accordingly, the non-decreasing conditions are 
enforced as: 
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    A GENCO is bound to enforce non-decreasing conditions 
for its total generation, total spinning reserves, and total non-
spinning reserves if it submits bidding curves for the entire 
GENCO instead of its individual units. 

B. Construction of bidding curve 
The problem solution presents hourly non-decreasing price 
and quantity pairs. A sample for a unit is shown in Fig. 3 in 
which there is a large jump from the second pair to the third. 
In such cases, there are two possible ways of constructing a 
continuous bidding curve as shown in Fig. 4. 
      

Pr
ic

e(
$/

M
W

h)

Generation(MW)

1iρ

2iρ

3iρ

1ip 2ip 3ip

 
Fig.2. Bidding curve for unit i 

 
Fig.3. Bidding price and quantity pairs 
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The first method is to use the lower generation and upper 
price of two continuous points to obtain a new price and 
quantity pair and connect all the price and quantity pairs to 
devise the bidding curve. By applying this method, the unit 
may lose some revenue if the market price is between 
$18/MWh and $25/MWh since the unit will only be awarded 
60MW. 

    

 
Fig.4. Two natural methods for constructing bidding curve 

    This is a conservative way of constructing bidding curves. 
The second method is to use the upper generation and lower 
price of two continuous points to obtain new price and 
quantity pairs. This would be a risky method as a unit may 
incur losses if the market price is between $18/MWh and 
$25/MWh and the awarded generation is 100MW. 
    Based on the two methods, we propose two other ways to 
construct bidding curves. After finding price and quantity 
pairs, the unit status, no-load cost, and startup/showdown cost 
are determined. The marginal cost of a GENCO would 
determine whether or not the GENCO should offer additional 
generation. Accordingly, marginal cost could be utilized for 
constructing bidding curves.  
    Assume we have two continuous price and quantity pairs 

'm and m . If the generation difference between the two 
continuous price and quantity pairs,  

),()',(),( miPmiPmiP −=Δ , is larger than a given tolerance 

gε  and there is a price jump between the two pairs that is 

larger than the price tolerance ρε , we divide ),( miPΔ  into l  

segments which is the maximum integer number that is 
smaller than gmiP ε/),(Δ  and calculate the marginal cost of 

unit at gkmiP ε∗+),( for lk ,...,1= . If the marginal cost at 

any new generation point is less than ),( migρ , the marginal 

cost will be substituted by ),( migρ to satisfy non-decreasing 

conditions. Likewise, the corresponding marginal cost is 
substituted by )',( migρ  if the marginal cost of any new 

generation point is larger than )',( migρ . The newly obtained 

price and generation pairs could be combined with the original 
pairs to construct a bidding curve. For instance, assume the 

marginal cost of unit in Fig. 3 is P∗+ 1.012 ($/MWh), gε = 

10MW, and ρε = $1/MWh. We apply the proposed method to 

construct bidding curve. The generation difference between 
the second and third points is 100 – 60 = 40 MW > 10MW, so 
we divide the generation range between 60MW and 100MW 
into 3=l  segments. That is, the new generation points are 70, 
80, 90 MW with marginal costs of 19, 20, and 21$/MWh, 
respectively. The bidding curve is shown in Fig. 5. 
    

 
Fig.5. Method 3 to construct bidding curve 

    Similarly, method 4 could be developed by dividing the 
price difference into several segments. In the above example, 
we could divide the price difference between second and third 
points in Fig. 3 into (25 – 18) / 1 = 7 segments. We would 
obtain the new price points at 19, 20, 21, 22, 23, 24, 25 
$/MWh with the corresponding generation at 70, 80, 90, 100, 
100, 100, 100 MW. Here the generation for second and third 
points should be no less than that for the second point and no 
larger than that for the third point to satisfy the non-decreasing 
condition. In this example, the obtained bidding curve by 
method 4 is the same as that shown in Fig. 5. 
    The above methods devise bidding curves in energy market. 
Similar methods for bidding in ancillary services market could 
be adopted based on opportunity cost. 

V.  RISK CONSTRAINTS 
The stochastic PBUC formulation in section III is a risk-

neutral model which is concerned with the optimization of 
expected payoff. However, a GENCO may also be concerned 
with its risk. Accordingly, we apply the method introduced in 
[25] for analyzing the risk associated with such decisions. A 
GENCO would set a targeted profit 0z  and the risk associated 
with its decision is measured by failure to meet the targeted 
profit. If the profit for one scenario is larger than the targeted 
profit, the associated downside risk would be zero; otherwise, 
it is the amount of unfulfilled profit. That is: 
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This conditional expression is a linear constraint represented 
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by auxiliary binary variables as: 

)()(0
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   (9) 

where M  is a large number. However, (9) may be deemed 
unnecessary based on the approach that will be introduced 
later. The expected downside risk for a GENCO is defined as: 

  )()()]([)( 0 ∑ ∗==
s

sRISKssRISKEzEDR π   (10) 

The smaller the )( 0zEDR , the better it is for decision makers 
since )( 0zEDR  represents the profit shortfall at a targeted 
profit. If a decision maker is not satisfied with the risk level, a 
risk constraint could be added to the original formulation as: 

00 )( EDRzEDR ≤             (11) 
where 0EDR  is the acceptable downside risk tolerance. 

A small example is given below to show the proposed 
method for measuring risks. Suppose we have one thermal 
unit with a marginal cost of $20/MWh and a minimum on/off 
time of one hour. Minimum and maximum capacity limits are 
50MW and 100MW, respectively and startup and shutdown 
costs are ignored. The initial status of the unit is “on” for 
submitting bids to the energy market. The possible scenarios 
for hourly market price at a specific hour are shown in Table 
I. The optimal solution based on stochastic programming in 
section III would be to commit the unit with submitted 
generation and payoff for each scenario shown in Table II. 
The expected payoff in this case is: 

150$2.05002.04002.02002.01002.0250 =∗+∗+∗+∗−∗−
If we set the targeted profit for the unit at zero, the downside 
risk would be:  

70$0.2] )100(0[0.2] )250(0[)0( =∗−−+∗−−=EDR . 

That is, the unit could obtain an expected payoff of $150 with 
an expected downside risk of $70. The unit which is not 
satisfied with the risk level will constrain the expected 
downside risk at a value such as 0700)0( =∗≤EDR  as 
discussed in section III. The corresponding risk-constrained 
solution would be to shut down the unit with a zero payoff 
and zero expected downside risk in each scenario. That is, the 
unit could reduce its risk level at the cost of decreasing its 
expected payoff. Accordingly, the inclusion of risk constraint 
could impact the optimal solution. 

The constraint on expected downside risk could result in an 
infeasible solution when the constraint is tight (i.e., relatively 
low risk tolerance 0EDR  or relatively high targeted profit). 
One possible approach to setting up a reasonable targeted 
profit and associated downside risk tolerance is to choose the 
profit based on operating experience or without considering 
risk constraint. For example, a GENCO could consider the 
scenario with the highest probability as its targeted profit and 
pick its risk tolerance. If the targeted profit is relatively high, 
then the downside risk tolerance should also be relatively 
high.  

The technique introduced in [25] is to successively tighten 
the constraint on the expected downside risk. For instance, if 
the downside risk without risk constraint is 0UEDR , we add a 

constraint such as 00 95.0)( UEDRzEDR ∗≤  and solve the 
resulting constrained problem with a new expected downside 
risk 1UEDR . For the next run, we tighten the risk constraint as 

00 90.0)( UEDRzEDR ∗≤  and repeat this procedure until we 
reach an acceptable risk level. The succeeding runs in this 
case are viewed as independent and could be solved in parallel 
after solving the problem without risk constraints.  

We could also penalize the expected downside risk in the 
objective function using a very large number. However, the 
advantage of the first method is that it provides a GENCO 
with a choice between expected payoff and risk. The second 
method would minimize the downside risk at the cost of 
reducing profit. However, the second method would only 
require a single execution while the first method would need 
multiple runs. 

TABLE I 
MARKET PRICE FOR THE SMALL EXAMPLE  

Scenario # Energy price ($/MWh) Probability 
1 15 0.2 
2 18 0.2 
3 22 0.2 
4 24 0.2 
5 25 0.2 

TABLE II 
GENERATION AND PAYOFF FOR EACH SCENARIO  

Scenario # Generation (MW) Payoff ($) 
1 50 -250 
2 50 -100 
3 100 200 
4 100 400 
5 100 500 

In this paper, we propose the following procedure for 
considering risk by combining the two methods. 

1. Solve the problem without considering risk constraint; 
Choose a target profit 0z  and calculate the expected 
downside risk )( 0zUEDR . If the calculated expected 
downside risk is within the GENCO’s risk tolerance, stop. 
Otherwise, go to step (2). 

2. Penalize the expected downside risk into the objective 
function by a very large number and solve the 
corresponding problem for calculating the minimum 
expected downside risk and the corresponding expected 
payoff. If the minimum expected downside risk is not 
acceptable, the GENCO’s targeted profit is too high and a 
lower risk level in unattainable. The GENCO could start 
over with a new targeted profit. If the minimum expected 
downside risk is acceptable, go to step (3). 

3. Choose an acceptable risk level based on the minimum 
expected downside risk, solve the risk-constrained 
problem, provide the commitment schedule of units, and 
devise bidding curves.  

Based on the above procedure, (9) may be deemed 
unnecessary. In the course of implementing the above 
procedure, step (1) would yield a risk-neutral solution while 
step (2) would yield a solution with minimum risk level. The 
solution obtained from step (3) is a tradeoff between 
maximizing expected payoff and minimizing risk. 
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Accordingly, the GENCO is in an improved position for 
submitting optimal bidding strategies. The formulated 
problem is a mixed integer linear program which could be 
solved by a commercial MIP solver.  

VI.  NUMERICAL EXAMPLES  
In this section, a GENCO with 20 thermal units is considered 
for illustrating the proposed method. The detailed unit data 
and market prices for energy and capacity price are given in 
http://motor.ece.iit.edu/Data/SPBUCData.pdf. In this study, 
we assume a uniform market clearing price for all buses. The 
case studies in this section utilize CPLEX 9.0 on a Pentium-4 
1.8GHz personal computer. We assume that market price has 
a normal distribution. However, other distribution properties 
could also be considered. In all the case studies, we only 
illustrate the bidding curve in the day-ahead energy market. 
Bidding curves for ancillary services could be developed 
similarly. Although, we introduce bidding curves for the entire 
GENCO, we could devise bidding curves for each unit 
similarly.  

Case 1: Impact of market price uncertainty on PBUC 
In this case, we first assume that the actual market price would 
be the same as forecasted price without risk constraint. That is 
a deterministic PBUC as in [11]. Table III shows the unit 
schedule with an objective function of $69,833.00. The 
identical units 1001-1003, 1006, 1008-1009, 1012-1013, 1015, 
1017-1018 are shut down when hourly market prices are 
lower than respective marginal costs. The other units are 
committed when hourly market prices are high. Unit 1007 is a 
relatively cheap unit which is shut down at hours 2 to 6 when 
hourly market prices are lower than the marginal cost of the 
unit. Table III shows that the hourly unit commitment is very 
sensitive to market prices as was explored in [11]. 

We consider the market price uncertainty as follows. The 
number of reduced scenarios is chosen to be 30 since the 
objective function does not change dramatically at this 
number. The proposed stochastic programming solution 
results in an objective function of $62,278.50 with an 
execution time of 848 seconds. The difference in profit with 
deterministic and stochastic market prices is $7554.50 (i.e., 
$69,833.00 - $62,278.50), which is called the value of perfect 
information [24]. The portion of unit schedule that is different 
from that in Table III is shown in Table IV. 

Table IV shows that the identical units 1001-1003, 1006, 
1008-1009, 1012-1013, 1015, 1017-1018 are shut down 
because they are relatively expensive when hourly market 
prices are relatively low. The comparison of Tables III and IV 
shows that when applying stochastic market prices, unit 1004 
is shut down for the entire scheduling period and other units 
are committed at some hours besides those in Table III. As to 
the commitment of unit 1004, the market price at hours 11 to 
22 is lower than its marginal cost in some scenarios when the 
objective function is to maximize the expected payoff instead 
of the payoff for a specific scenario. Other units in IV are 
committed when hourly market prices are higher than 
marginal costs in certain scenarios and the commitment would 
increase the expected payoff. 

This case study shows that the market price uncertainty 
could have a significant impact on the hourly unit schedule. 

The market price uncertainty could lower the GENCO’s profit 
represented by the value of perfect information ($7,554.50). 

 
 
 

TABLE III 
UNIT SCHEDULE UNDER DETERMINISTIC MARKET PRICE 

Unit Hours (0-24) 
1001-1003 1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 

1004 1  0  0  0  0  0  0  0  0  0  0  1  1  1  1  1  1  1  1  1  1  1  1  0  0 
1005 1  0  0  0  0  0  0  0  0  0  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0 
1006 1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 
1007 1  1  0  0  0  0  0  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 

1008-1009 1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 
1010 1  0  0  0  0  0  0  0  0  0  0  1  1  1  1  1  1  1  1  1  1  1  1  0  0 
1011 1  0  0  0  0  0  0  0  0  0  0  1  1  1  1  1  1  1  1  1  1  1  1  1  0 

1012-1013 1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 
1014 1  0  0  0  0  0  0  0  0  0  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0 
1015 1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 
1016 1  0  0  0  0  0  0  0  0  0  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0 

1017-1018 1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 
1019 1  0  0  0  0  0  0  0  0  0  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0 
1020 1  0  0  0  0  0  0  0  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 

 
TABLE IV 

PORTION OF UNIT SCHEDULE UNDER STOCHASTIC MARKET PRICE 
Unit Hours (0-24) 
1004 1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 
1005 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 
1007 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 
1010 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0 
1011 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 
1014 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 
1016 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 
1019 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 
1020 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 

 

Case 2: Establishing bidding curves 
When risk constraint is ignored, bidding curves at hour 8 are 
shown in Figs. 6 and 7 without and with postprocessing 
techniques (method 4 in section IV), respectively.  

 
Fig. 6 Bidding curve for hour 8 without postprocessing 
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Fig. 6 shows that the bidding curve is monotonically 
increasing and there is a large discontinuity between 700MW 
and 1300MW. The discontinuity in biding curve could incur 
financial losses to a GENCO as discussed before. In Fig. 7, 
bidding curve is refined by applying method 4 in section IV. 
This curve is continuous between 700MW and 1300MW 
which is more desirable as it will not result in significant 
changes in profit between any two segments. 

 
Fig. 7 Bidding curve with postprocessing at hour 8 
 
Case 3: Impact of risk constraints 
In this case, we study the impact of risk constraint on bidding 
curve. Table V shows the profit and probability for each 
scenario without risk constraint.  

Table V shows that the profit for any given scenario, which 
is a function of hourly market price, could be quite different 
from those of others. For scenarios 1 and 8, the payoff is 
negative because the market price is quite low in these two 
scenarios. The GENCO would set its targeted profit at 
$50,000 and those below the target are shown in bold in Table 
V. The corresponding probability for such scenarios is 0.2578 
(i.e., 0.059 + 0.0326 + 0.0302 + 0.044 + 0.0302 + 0.0208 + 
0.041) with an expected downside risk of $9,611.74. This risk 
level could be unacceptable to a GENCO. The GENCO could 
then apply the proposed method to control the associated risk 
level. Using a very large number (10,000), the expected 
downside risk is adjoined to the objective function for finding 
the minimum expected downside risk. The minimum 
downside risk is $4,734.68 for the targeted profit of $50,000 
with an expected payoff of $52,878.40. That is, for the given 
targeted profit, the GENCO could not expect a lower 
downside risk.  

If a GENCO is still unsatisfied with this risk level, it means 
that the GENCO’s targeted profit is too high. Accordingly, we 
assume the acceptable expected downside risk level for the 
GENCO is $6,000. By considering risk-constrained model, the 
objective would be $59,591.40 with a downside risk of 
$6,000. Accordingly, a GENCO could reduce its downside 
risk level by 37.59% ((9,611.74 – 6,000) / 9,611.74) at the 
cost of reducing its expected payoff by 4.31% ((62,278.50 - 
59,591.40) / 62,278.50). Table VI shows the payoff for each 
scenario with risk constraint in which scenarios with increased 
profit are shown in bold. The portion of unit schedule that is 
different from that in Table IV is shown in Table VII. 

 The comparison of Tables V and VI shows that the profit 
for scenarios 1 and 8 is no longer negative when units 1005, 
1010, and 1011 are shut down at additional hours. The 
additional payoff for scenarios in Table VI is at the cost of 
reducing payoffs for other scenarios. The comparison of 
Tables IV and VII shows that units 1005, 1010, and 1011 are 
shut down at additional hours when the commitment of these 
units would contribute to the maximization of expected payoff 
but would also increase the downside risk. The GENCO could 
shut down the units for reducing its expected downside risk at 
the cost of reducing the expected payoff. 

It should be noted that the inclusion of risk constraint 
would impact hourly bidding curve. For the purpose of 
comparison, we only show in Fig. 8 the bidding curve at hour 
8. Comparison of Figs. 7 and 8 shows that the risk constraint 
would reduce the offered generation based on bidding price. 
The major reduction is because the relatively large units 1010 
and 1011 are shut down at hour 8. However, the dispatch of 
smaller units at hour 8 also contributes to the reduction of 
total generation offered by the GENCO. 

 
TABLE V 

SCENARIO PROFIT WITHOUT RISK CONSTRAINTS 
# Profit ($) Probability # Profit ($) Probability 
1 -13936.20 0.0590 16 118743 0.0352 
2 87408.80 0.0262 17 12982.60 0.0440 
3 59681.60 0.0418 18 121046 0.0382 
4 70304.50 0.0382 19 86731.40 0.0266 
5 48108.40 0.0326 20 53894.10 0.0282 
6 121253 0.0410 21 61158.30 0.0374 
7 61557.40 0.0278 22 63617.20 0.0302 
8 -7847.60 0.0302 23 44169.20 0.0302 
9 96364.10 0.0278 24 37966.70 0.0208 

10 78337.80 0.0216 25 77150 0.0224 
11 12164.20 0.0260 26 57976.60 0.0318 
12 1227810 0.0384 27 35200.40 0.0410 
13 38994.90 0.0350 28 137145 0.0230 
14 59412.10 0.0312 29 71658.60 0.0302 
15 66565.70 0.0410 30 55793.20 0.0430 

  
TABLE VI 

SCENARIO PROFIT WITH RISK CONSTRAINTS 
# Profit ($) Probability # Profit ($) Probability 
1 8126.85 0.0590 16 95971.70 0.0352 
2 72822.30 0.0262 17 22815.50 0.0440 
3 51017.30 0.0418 18 100178 0.0382 
4 61206.40 0.0382 19 72121.50 0.0266 
5 48815 0.0326 20 49087.50 0.0282 
6 105478 0.0410 21 49218.20 0.0374 
7 52556 0.0278 22 57947.90 0.0302 
8 5835.51 0.0302 23 52398.20 0.0302 
9 87282.90 0.0278 24 50381.60 0.0208 

10 65686 0.0216 25 69806.40 0.0224 
11 24759 0.0260 26 58741.50 0.0318 
12 105690 0.0384 27 43909.10 0.0410 
13 50984.80 0.0350 28 120670 0.0230 
14 51632.80 0.0312 29 71458.90 0.0302 
15 69763.90 0.0410 30 57646 0.0430 

 
TABLE VII 

UNIT SCHEDULE WITH RISK CONSTRAINTS 
Unit Hours (0-24) 
1005 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  0  0 
1010 1  1  1  1  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 
1011 1  1  1  1  1  1  0  0  0  0  0  1  1  1  1  1  1  1  1  1  1  0  0  0  0 
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Fig. 8 Bidding curve for hour 8 with risk constraint 

VII.  DISCUSSION 
It should be noted that there may be coupling among 
consecutive hourly prices. For example, if the market price at 
one hour is high, it is probable that the next hour price would 
also be high. In this paper, we run the Monte Carlo simulation 
for individual hours and plan to consider the coupling among 
hourly market prices in our future studies. However, different 
market price simulation approaches would only impact the 
input to our proposed formulation. 
 The proposed model could be applied to a large system as 
our formulation depends on commercial MIP solvers for 
solving the stochastic mixed integer program. With the further 
developments in both hardware and software algorithms, 
leading commercial MIP solvers such as CPLEX, OSL, 
XPRESS, and LINDO have been improved significantly for 
solving very large cases [11]. Stochastic Lagrangian 
relaxation (LR) [26], [27] could also be applied for solving the 
proposed formulation. However, the MIP formulation has the 
following advantages over the LR approach [11]: (1) global 
optimality; (2) direct measure of the optimality of a solution; 
(3) more flexible and accurate modeling capabilities. We 
chose to apply the commercial MIP solver to solve the 
GENCO’s problem since the size of the problem is generally 
within the solving capability of commercial solvers.  
 The input data to our formulation include market prices for 
energy and ancillary services and unit technical data such as 
cost curve, minimum on/off times, ramping up/down limits, 
etc. Market prices and variances could be forecasted by 
available forecasting techniques such as artificial neural 
network, time series model [1]. The maintenance of the input 
data is easy and flexible. 

The proposed formulation is very practical which could be 
applied by GENCOs for submitting offers to energy and 
ancillary services markets. Meanwhile, the possible inclusion 
of arbitrage strategies [1], [27], [28] in the proposed model 
would provide a very practical GENCO tool for maximizing 
portfolios in energy, bilateral contracts, ancillary services, 
fuel, and emission allowance markets.  

VIII.  CONCLUSIONS 
A risk-constrained bidding strategy for day-ahead energy 

and ancillary services markets is proposed for GENCOs. The 
market price uncertainty is modeled using scenarios and 
scenario reduction techniques are applied to reduce the 
number of scenarios in consideration. The risk associated with 
the market price uncertainty is modeled using the downside 
target profit shortfall and is incorporated explicitly as a 
constraint in the model. Accordingly, a closed-loop bidding 
strategy is constructed. After solving the stochastic PBUC 
problem, postprocessing is applied based on marginal costs 
for refining bidding curves. 

Test results illustrate that it is necessary to consider market 
price uncertainty and incorporate the impact of stochastic 
market price on the commitment schedule of units. It is also 
shown that risk constraints would play an important role in 
devising biding curves. A GENCO could significantly reduce 
its risk level at the cost of reducing expected payoffs. 
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