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Abstract— The introduction of an equivalent model for regional 

power grids in a large-scale power system with complex loads is 

essential for reducing the computation burden in real-time 

dynamic analyses. In this paper, we propose a generalized 

discrete-time equivalent model (GDEM) for simulating the 

physical characteristics of a regional power grid. GDEM facilitates 

the interconnection of equivalent models for representing regional 

power grids and improving the accuracy and speed in dynamic 

simulations of large-scale power systems. The paper first 

investigates the inherent relationships among coefficients in the 

discrete-time models of synchronous generators and composite 

loads so as to guide the estimation of coefficients of the GDEM for 

regional power grids. The paper then develops relationships 

among coefficients associated with GDEM for a regional power 

grid. The GDEM that is formed by combining discrete-time 

models of synchronous generators and composite loads represents 

specific dynamic characteristics of regional power grids. 

Numerical experiments are conducted by simulating ground faults 

in the China Electric Power Research Institute system, and the 

accuracy of the proposed GDEM is verified by analyzing the 

simulation results. In addition, the paper has applied GDEM to 

study the regional power grid of central China, which validates the 

use of GDEM in practical power system analyses. 

Index Terms—Large-scale power system operation, discrete-

time equivalent model for regional power grids, regional model. 

NOMENCLATURE 

Indices  

i  Index for coefficients 

K Index for discrete time steps 

Symbols  

 Incremental value 

0  Subscript for steady state 

Parameters  

E  Transient voltage 

U  Terminal voltage 

I  Terminal current 

U Amplitude of the bus voltage 

Id, Iq Currents of d-axis and q-axis 

Ud, Uq Voltage of d-axis and q-axis 

Efd The terminal voltage of excitation 

Igr, Igj Igr′, Igj′ Real and imaginary currents of generator 

Ugr, Ugj Real and imaginary voltages of generator 

Icr, Icj 
Real and imaginary currents of composite 

load 

Ir, Ij 
Real and imaginary currents flowing into the 

regional power grid 

 Bus voltage phase angle  

Td′, Td″ 
Short-circuit transient and sub-transient time 

constants of d-axis 

fx, fy Variables in x-y coordinates 

fd, fq Variables in d-q coordinates 

Td0′, Td0″ 
Open-circuit transient and sub-transient time 

constants of d-axis 

TD′ 
Short-circuit transient time constant of D-

branch 

TD0″ 
Open-circuit transient time constant of D-

branch 

Tq″ 
Short-circuit sub-transient time constant of q-

axis 

Tq0″ 
Open-circuit sub-transient time constant of q-

axis 

D Damping coefficient 

 Angle of the generator 

 Angular velocity of rotor 

Rs, Rr Resistance of stator and rotor 

Xs, Xr Reactance of the stator and rotor 

X Steady state reactance 

X′ Transient reactance 

Xm Exciting reactance 

xffd, xffq 
Equivalent excitation reactance of d-axis and 

q-axis 

x11d, x11q 
Positive sequence equivalent reactance of d-

axis 

xad Reactance of armature reaction of d-axis 

xd Reactance of d-axis 

xd′, xd″ 
Transient and sub-transient reactance of d-

axis 

Rfd, Rfq 
Equivalent excitation resistance of d-axis and 

q-axis 

R1d, R1q 
Positive sequence equivalent resistance of d-

axis and q-axis 

d, q Flux linkages of d-axis and q-axis 

uf Excitation winding voltage 

h Sampling time step 

Variables  

Xd(s), Xq(s) Inductances of d-axis and q-axis 

gi and gi 
Both are the discrete-time model coefficient 

of the synchronous generator 

ci 
Discrete-time model coefficient of composite 

load 

i 
Discrete-time model coefficient of regional 

power grid 

s Laplace transformation 

z Z transformation 

Other notations are defined in the text. 
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I. INTRODUCTION 

ARGE power grids are often operated through coordinated 

controls of a hierarchy of regional power grids. Individual 

regional power grids equipped with energy management 

systems (EMSs) establish equivalent models for their external 

regional systems with numerous challenging tasks for data 

exchanges among regional power system models [1]–[3], which 

has consistently threatened the stability of power systems 

[4],[5]. 

Recently, several studies have proposed equivalent models 

for regional power systems [6]-[7]. The equivalent models that 

were widely adopted for maintaining the dynamic 

characteristics of regional power grids represented three 

categories of coherent-based models [8],[9], analytical models 

[10],[11], and estimated equivalent models [12],[13]. In most 

cases, an aggregated generator was used to represent multiple 

generators in the equivalent model of a regional power grid and 

an equivalent load was adopted to represent a multitude of loads 

[14]–[16]. 

With the additional uncertainty introduced in power system 

operations and the increasing penetration of renewable energy 

resources into regional power grids, the attainment of an 

equivalent model for a regional power grid has become more 

cumbersome [17],[18], leading to strong nonlinearities in 

regional power grids [19]. In [20], a seventh-order nonlinear 

quasi-state space model was derived for an active distribution 

network. In [21], a second-order transfer function was used as 

a dynamic equivalent model for a distribution network. In [22], 

the artificial neural network (ANN) method was introduced to 

represent a model for a regional power grid. However, the 

equivalent model depended on the operating state of the 

regional power grid for estimating ANN weights. 

It is difficult to obtain an equivalent representation of 

regional power grids for dynamic stability analyses as power 

systems are inherently nonlinear and analytical models are 

generally lacking for equivalent representations of such 

nonlinear equations [23]. Ref. [24] proposed a semi-implicit 

formulation of differential-algebraic equations (DAEs) 

describing power system models for transient stability analyses, 

which reduce computation burdens and increase the sparsity of 

the Jacobian matrix of the power system. Ref. [25] described 

the Power System Analysis Toolbox (PSAT), an open software 

package for analysis and design of small to medium size electric 

power systems. A regional power grid equivalent was often 

represented by a static load, which was a conservative model 

for embodying the power system operation in critical conditions 

such as the northeast blackout of 2003 in the United States. 

Therefore [26] proposed a large power systems equivalent 

represented by an aggregated generator, which characterizes 

coherent combinations of strongly connected machines in an 

area after the northeast blackout; however, the aggregated 

generator did not embody all typical types of loads. 

The power system model represents the integration of 

smaller models for regional power grids to address the 

operation of the integrated power system that cannot be 

represented by individual smaller models. The power system 

model integration including a hierarchy of regional power grids 

are interconnected with external regional models for dynamic 

simulations. Ref. [27] presented the characteristic of a complex 

high-order continuous system based on an all-coefficient 

adaptive control method applied to the integrated power system 

model. Yet regional power grids cannot strictly satisfy the 

required condition that the external equivalent model 

parameters be time-independent. 

An equivalent model that is universally applicable to regional 

power grids with diverse compositions is conducive to the 

assembly of the models of power system regions for real-time 

analyses that guide the secure operation of the whole power 

system. Dynamic components in a regional power grid usually 

include generators and induction motors. Accordingly, the 

generalized discrete-time model of a regional power grid can be 

derived based on discrete-time models of synchronous 

generators and composite loads, including various types of 

loads. 

This paper proposed GDEM for a regional power grid based 

on discrete-time models of synchronous generators and 

composite loads consisted by induction motor load and static 

load as shown in Fig. 1, which is regional power grid. Fig. 1 (a) 

is original regional power grid and Fig. 1(b) is regional power 

grid representation, where G is a generator, M is induction 

motor load, including the typical type of load. GDEM considers 

the terminal voltage of the boundary bus and the injected 

current by the external grid as input and output state variables 

in each regional power system, respectively, which is different 

from the previous methods for developing the power system 

dynamic equivalence (e.g., [8]–[13]). Therefore, the 

practicability of GDEM is on representing regional power grids 

which consist of dynamic components (e.g., synchronous 

generators, induction motors) or static components (e.g., lights). 
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(a)                                                                     (b) 

Fig.  1. Regional power grid (a) Original regional power grid (b) Regional 
power grid representation 

The contributions of this paper are listed as follows: 

1) The paper has proposed GDEM for a regional power grid, 

which can be derived based on discrete-time models of 

individual synchronous generators (or an equivalent aggregated 

generator) and individual composite loads (or an equivalent 

aggregated composite loads). 

2) GDEM investigates the inherent relationship among 

coefficients of the discrete-time models of synchronous 

generators and composite loads so as to guide the estimation of 

coefficients for representing those components in regional 

power grids. 

3) The paper demonstrates analytically as well as via 

simulations that the sum of output state coefficients in the 

regional power grid model is approximately equal to 1, and the 

sum of input state coefficients is approximately equal to 0 in 

GDEM. On the one hand the relationship among coefficients 

could provide a theoretical basis for validating GDEM 
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parameters; on the other hand, the relationship among 

coefficients reduces the number parameters to be identified. 

4）The paper studies the regional power grid of central China, 

using GDEM, which validates the use of GDEM in practical 

applications. The broader applications of GDEM are also 

discussed in the paper. 

The remainder of this paper is organized as follows. First, 

discrete-time models are derived for a synchronous generator 

and a composite load in Sections II and III, respectively. Then 

Section IV presents a GDEM of a regional power grid based on 

the discrete-time models of generators and composite loads 

through the weighted sum method. The modeling steps for 

GDEM and case studies are considered in Section V to verify 

the accuracy of the proposed model. Finally, Section VI 

concludes this paper. 

II. DISCRETE-TIME MODEL OF A SYNCHRONOUS 

GENERATOR 

Assume that there exists an equivalent winding in both d-axis 

and q-axis of a synchronous generator, where flux linkages of 

d-axis and q-axis are expressed as [28],[29], 
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 (1) 

Here, G(s) is the stator to field voltage transfer function [29]. 

Xd(s) and Xq(s) are expressed by, 
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The armature resistance R is generally small enough to be 

ignored. The impedances are stated in (3) when the automatic 

voltage regulator (AVR) is applied, 
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Accordingly, (3) is rewritten as, 
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Quantities in dq coordinates are transformed to those in xy 

coordinates given in the Fig. 2. Using dq-xy coordinates in Fig. 

2, we can get 
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Through the transformation, we rewrite the (5) as, 
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Fig.  2. dq-xy coordinates 

As the model accuracy suffers and the number of parameters 

is increased when bus voltage phase angles are explicitly 

expressed in (7). Accordingly, the bus voltage phase angle is 

ignored for facilitating the model derivation, and (7) is 

simplified as 
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 (8) 

The transfer functions relating the generator’s current to its 

voltage are derived as, 
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where detailed expressions of parameters are presented in 

Appendix A. 

The bilinear transformation is a nonlinear mapping method 

that compresses the infinite frequency range to a finite one to 

avoid the spectrum aliasing caused by the continuous-discrete 

transformation [25]. According to the bilinear transformation 

applied to (9) and (10), we have 
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where detailed expressions of all parameters are presented in 

Appendix B. The real-part coefficients g1, g2, g3, g4, g5, g6, 

g7 and the imaginary-part coefficients g8, g9, g10, g11, g12, 

g13, g14 in (11) and (12), respectively, are related to time 

constants Td′, Td0′, Td″, Td0″, TD′, TD0′, Tq″, Tq0″ and the sampling 

time h (where
1

1

2 1

1

z
s

h z









) in the bilinear transformation. In 

turn, the time constants are dependent on reactance xffd, xffq, x11d, 

x11q, xad, xd, xd′, xd″ and resistances Rfd, Rfq, R1d, R1q. Hence, the 

discrete-time model of a synchronous generator is dependent on 

its physical characteristics. 

The following relationships are observed in (11) and (12) 

when sampling time h is small, 
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It is shown here that the sum of output state coefficients of a 

synchronous generator is approximately equal to 1, and the sum 

of input state coefficients is approximately equal to 0. 

When the variation of bus voltage phase angle is considered, 

the transfer functions relating the generator current to its 

voltage magnitude and phase angle are derived as, 

 1 2( ) ( ) ( ) ( ) ( )gr gr grI s G s U s G s s      (17) 

 1 2( ) ( ) ( ) ( ) ( )gj gj gjI s G s U s G s s      (18) 

where G1gr(s) and G2gr(s) are the transfer functions of Igr′ with 

respect to U and . G1gj(s) and G2gj(s) are transfer functions of 

Igj′ with respect to U and . 

According to the bilinear transformation applied to (17) and 

(18), we have 
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The detailed expressions are not stated here. However when 

the bus voltage phase angle is ignored in (11) and (12), we find 

that the number of model parameters is 14. When the bus 

voltage phase angle is considered in (19) and (20), we find that 

the number of model parameters increases to 22, which can be 

a computation burden. Correspondingly, the voltage phase 

angle variations are ignored in our study in order to facilitate 

the derivation and the simulation of the proposed model. The 

detailed analyses are provided in Section V. 

III. DISCRETE-TIME MODEL OF A COMPOSITE LOAD 

A composite load consists of a static load and an induction 

motor connected in parallel [29]–[32], which is expressed as, 

    0 01d d

d E
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where  sE U R jX    ,  ( ) sI U E R jX    , s mX X X  , 

( )s m s mX X X X X   , 
0 ( )d r m rT X X R   . 

When the terminal voltage and the injected current of the 

composite load are considered as input and output variables, 

respectively, (21) is transformed as [33], 
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where   01 /r dA B X T     , 
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2 2/ ( )s sG R R X   , 2 2/ ( )sB X R X   . 

The frequency domain representation of (22) is obtained by 

applying the Laplace transformation to (22), 
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cr r cr r cj r

cj j cr j cj j
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
        

 (23) 

Accordingly, transfer functions relating real and imaginary 

parts of injected current to terminal voltage is obtained as, 

 

2

2

( )

( )

r j r r j r jcr
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
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 (24) 

 

2

2

( )

( )

cj j r j j r j r

r j r j j r

I s A C sA G sC s B A C sBA

U s s sA sB A B A B

    

   



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The following difference equations are obtained by applying 

the bilinear transformation to (18) and (19), 
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 (26) 
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 (27) 

where detailed expressions of all parameters are presented in 

Appendix C. 

The real-part coefficients c1, c2, c3, c4, c5 and the 

imaginary-part coefficients c6, c7, c8, c9, c10 in (26) and (27) 

are related to the composition of the composite load as well as 

the sampling time h. Hence, the discrete-time model of a 

composite load is dependent on its physical characteristics. 

The following relationships among the coefficients in (26) 

and (27) are derived when h is small enough, 
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 (30) 
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 (31) 

We conclude that the sum of output state coefficients of a 

composite load is approximately equal to 1, and the sum of 
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input state coefficients is approximately equal to 0, which could 

provide a theoretical basis for validating the GDEM parameters. 

IV. GDEM OF REGIONAL POWER GRID 

The aggregated regional power grid is illustrated in Fig. 3, in 

which the synchronous generator model is expressed by (11) 

and (12), and the composite load model is expressed by (26) 

and (27). The discrete-time model of the regional power grid is 

deduced by introducing the terminal voltage of the boundary 

bus and the currents injected by the external power grid as input 

and output state variables, respectively. 

M

Static Load

G
Induction Motor Load

GeneratorComposite Load

İ =Ir+jIj

İc =Icr+jIcj İg =Igr+jIgj

U  
CP

 
Fig.  3. Regional power grid 

In Fig. 3, the current flow into the coupling point (CP) is 

expressed as 

 c gI I I   (32) 

where 
cI  is the current flow into the composite load, and gI  is 

the current flow into the synchronous generator. 
The incremental form of (32) is expressed as 

 r j c gI I j I I I          (33) 

We employ weighting factors to coordinate synchronous 

generator and composite load characteristics in the discrete-

time model of a regional power grid considering by concluding 

that at steady state there exists a certain correlation between real 

and imaginary parts of the currents flowing into the 

synchronous generator and the composite load. 

Assume that a proportion factor Kr exists between the real 

part of the synchronous generator current and that of the 

composite load, while another proportion factor Kj would apply 

to imaginary parts, which are stated as 

 
cr r gr

cj j gj

I K I

I K I





 (34) 

Considering (11), (12), (26), (27), (33), and (34), the CP 

current in Fig. 3 is expressed as, 
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 (35) 

where 
1 1

1
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
, 

2 2

2
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 






, 3 3g  , 4 4 3g c    , 

5 5 4g c    , 6 6 5g c    , 7 7g  , 
6 8

8
1

c j g

j

K

K

 






, 

7 9

9
1

c j g

j

K

K

 






, 10 10g  , 11 11 8g c    , 12 12 9g c    , 

13 13 10g c    , 14 14g  . 

Based on the relationships among coefficients in (13)–(16), 

(28)–(31) and (33)-(34), when h is small, the following 

relationships among coefficients in (29) are obtained: 
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c c r g gg g
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Accordingly, we draw the following conclusions for GDEM:  

1) The regional power grid model can be expressed similar to 

that of a synchronous generator or a composite load. 

2) The coefficients of equivalent components in the regional 

power grid model are functions of h. 

3) When h is small, the sum of output state coefficients in the 

regional power grid model is approximately equal to 1, and the 

sum of input state coefficients is approximately equal to 0, 

which could provide a theoretical basis for validating the 

estimated GDEM parameters. 

We disregarded the effect of power network in our regional 

model derivation. Ref. [34] proposed a dynamic power system 

equivalent model using power transfer distribution factors. 

Accordingly, the model in Fig. 4 represents a regional power 

grid considering the regional power grid network. In Fig. 4, zfm 

and zfg are composite load and synchronous machine 

impedances, respectively in the network admittance matrix. 

When the regional power grid network is considered, the 

GDEM dimension will be increased. 

M

Static Load

G
Induction 

Motor Load

GeneratorComposite Load

zfg

zfm

 
Fig.  4. Regional power grid representation considering power grid network 

We can estimate the GDEM parameters using the least 

squares estimation method [35],[36]. Here, (35) is represented 

as, 

 Y    (40) 

where  and Y are the GDEM input and output signals, 

respectively, measured in the regional power grid terminal bus, 

and  represents the GDEM parameters. Accordingly, 
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. 

To estimate the parameter , we apply the least squares 

method in which the residual J is minimized as 

 
2

ˆmin J = Y


   (41) 

where ̂  are the estimated GDEM parameters. 

When ˆ 0J    , the estimated parameters ̂  and output 

values Ŷ  are attained as, 

 1ˆ ( )T TY      (42) 

 ˆŶ    (43) 

where Ŷ  is the estimated GDEM output. 

According to (42) and (43), when we get the values of the  

and Y from the regional power grid, the estimated parameters 

̂  and estimated output Ŷ  can be calculated. As GDEM is in 

the incremental form when estimated output Ŷ is known, Ir and 

Ij in the regional power grid will be calculated by adding steady 

state values of Ir0 and Ij0, to the estimated values.  

V. SIMULATION AND VERIFICATION 

In this section, two regional power grids are simulated. The 

results verify the accuracy and effectiveness of the proposed 

equivalent model for representing the regional power grids. All 

simulations are conducted on a computer running a 64-bit 

Windows 10, with a 3.6 GHz Intel (R) Core (TM) i7-7700 CPU 

and 8GB memory. The version 7.12 of the Power System 

Analysis Software Package (PSASP) software and the version 

R2016a of the Matlab software are used for simulation. 

When GDEM is applied to a simple regional power grid with 

composite load for verifying the GDEM model, the steps for 

deriving GDEM parameters include: 

1) The power system model structure with parameters for the 

regional power grid are presented. 

2) GDEM parameters are obtained, relationships among GDEM 

parameters are verified, and adaptability and dynamic 

characteristic of GDEM are examined through derivation and 

estimation methods. 

Case 1: Regional power grid is represented by a composite load 

For a certain regional power grid, the CEPRI test system as 

illustrated in Fig. 5 is considered for simulation in which a 

composite load is connected to BUS50 in the regional power 

grid. 

To verify the feasibility of the proposed model, typical values 

are utilized for representing the composite load: Rs=0, Rr=0.02, 

Xs=0.18, Xr=0.12, Xm=3.5 and h=0.01. A single-phase-to-

ground fault is applied to the transmission line located between 

BUS16 and BUS19 at t=1s. The fault is cleared at t=1.2s, and 

the original steady state is restored. Then, the GDEM of a 

composite load is estimated based on (26) and (27) as: 

 
( 2) 1.9976 ( 1) 0.9976 ( )

0.0088 ( 2) 0.0000049 ( 1) 0.0087 ( )

cr cr crI k I k I k

U k U k U k
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 (44) 

 
( 2) 1.9976 ( 1) 0.9976 ( )

5.8376 ( 2) 11.6687 ( 1) 5.83102 ( )

cj cj cjI k I k I k

U k U k U k

       
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 (45) 

In order to verify the GDEM approach, the coefficients of 

discrete-time model of the regional power grid are also obtained 

by the least-square curve fitting in which the sum of squared 

differences between fitted values and CP current trajectories is 

minimized in order to estimate the coefficients. 
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Fig.  5. Test system in Case 1 

Two disturbances corresponding to the fault current are 

represented by voltage dips which are simulated by modifying 

the grounding resistance; the disturbed CP current trajectories 

used for estimating the coefficients in the discrete-time model 

are listed in Table I. 

The fitted curves for real and imaginary parts of the CP 

current under two disturbances are depicted in Figs. 6 and 7, 

respectively. Here, the black curve corresponds to actual values 

in the terminal bus 50, the green one corresponds to estimated 

values using (44) and (45), and the red one corresponds to 

calculated values by least squares fitting based on (26) and (27). 

Figs. 6 and 7 show that the estimated and fitted real and the 

imaginary parts of currents are approximately the same as the 

actual curves representing subtle differences in enlarged spots. 

TABLE I 

PARAMETERS IN CASE 1 

Parameters 
Values 

Relationship 
3% 30% 

c1 1.99762 1.99762 
c1+c21 

c2 -0.99762 -0.99762 

c3 -0.00875 -0.00875 

c3+c4+c50 c4 -0.0000007 -0.0000007 

c5 0.00874 0.00874 

c6 1.99762 1.99762 
c6+c71 

c7 -0.99762 -0.99762 

c8 -5.83766 -5.83765 

c8+c9+c100 c9 11.66874 11.66874 

c10 -5.83106 -5.83106 

Using Table I and Figs. 6 and 7 in this case study, we 

conclude that: 

1) The coefficients values in the Table I are close to the true 

coefficients values in (44)–(45), verifying the correctness of the 

proposed discrete-time model. 

2) The coefficients are similar in the two disturbances, 

indicating that the proposed discrete-time model is robust 

against operating conditions in the external power grid. 

3) The sum of output coefficients is approximately equal to 1, 

and the sum of input coefficients is approximately equal to 0, 

which accord with (28)–(31). The relationship among 
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coefficients provide a theoretical basis for validating GDEM 

parameters. In addition, the relationship among coefficients 

reduces the number of parameters that need to be estimated for 

representing GDEM. In the (28) and (30), if we know one 

parameter in the equation, we can determine the other one. In 

(29) and (31), if we know two parameters in the equation, we 

can get the last one. 
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Fig.  6. Dynamic response of Ir and Ij with disturbance 1 
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Fig.  7. Dynamic response of Ir and Ij with disturbance 2 

In Case 1, the GDEM methods has been verified for through 

the research on GDEM consisted by composite load. When 

GDEM is applied to a more complex regional power grid 

considering the following steps, 

1) The terminal voltage of boundary bus and the injected current 

by external grid are calculated as input and output state 

variables in each regional power system. 

2) GDEM parameters are estimated, relationships among 

GDEM parameters are verified, and adaptability and dynamic 

characteristic of GDEM are examined through estimation 

methods. 

Case 2: Regional power grid is represented by a synchronous 

generator together with a composite load 

Considering another certain regional power grid, the CEPRI 

system, depicted in Fig. 8, is used again for simulation. The 

regional power grid consists of a synchronous generator and a 

composite load located at BUS5 and BUS50, respectively. 

When we consider the generator as aggregated generator and 

the composite load as aggregated composite load, the results 

will be the same. The synchronous generator is located at BUS5 

and its parameters are given in Table II. The composite load is 

accessed at BUS50, and the proportion of the induction motor 

is 30%, the static load consists of constant reactance, and the 

induction motor parameters are given in Table III. 

In this study, a single-phase-to-ground fault is applied at t=1s 

to the transmission line located between BUS16 and BUS19, 

and the fault is cleared at t=1.2s. The 3%, 20%, and 30% voltage 

dips are attained by setting appropriate grounding resistances.  

The GDEM model parameters with these disturbances are 

presented in Table IV which reveal the following observations, 

1) The coefficients in the discrete-time model are similar in two 

disturbances. 

2) The sum of output state coefficients of the model is 

approximately equal to 1, and the sum of input state coefficients 

of the model is approximately equal to 0, which accord with (36)

-(39). On the one hand, the relationship among coefficients 

provide a theoretical basis for validating GDEM parameters; on 

the other hand, the relationship among coefficients reduces the 

number of parameters that need to be estimated for representing 

the equivalent system. In (36) and (38), we can determine the 

last one parameter if we know the two parameters in the 

equation. In (37) and (39), we can determine the last parameter 

if we know the three parameters in the equation. 
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Fig.  8. Test system in Case 2 

TABLE II 

PARAMETERS IN SYNCHRONOUS GENERATOR LOCATED AT BUS5 

Xd Xd′ Xd″ Xq Xq′ Xq″ 

1.951 0.306 0.198 1.951 1.951 0.198 

Tj Td0′ Tq0′ Td0″ Tq0″ D 

6.149 6.2 0.1 9999 0.5 0 

TABLE III 
PARAMETERS IN INDUCTION MOTOR LOCATED AT BUS50 

Rr
 

Xs
 

Xr
 

Xm
 

Tj
 

s
 

0.02 0.295 0.12 2 0.576 0.0116 
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TABLE IV 

PARAMETERS IN CASE 2 

Parameters 
Values 

Relationship 
3% 20% 30% 

1 1.2437 1.9050 1.3778 

1+2+31 2 0.1647 0.1429 0.1789 

3 -0.4516 -0.3562 -0.3373 

4 3.6052 3.3894 3.5042 

4+5+6+70 
5 -4.9354 -4.7539 -5.2584 

6
 

-0.4482 -0.2083 0.4721 

7 1.8312 1.3179 1.3287 

8 1.2098 1.2583 1.2850 

8+9+101 9 0.1538 0.1038 0.1293 

10 -0.3986 -0.3646 -0.3461 

11 3.6052 3.7077 3.5042 

11+12+13+14
0 

12 -4.9354 -5.0273 -5.2584 

13 -0.4482 -0.4246 0.4721 

14 1.8312 1.5119 1.3287 

The disturbed power system curves with GDEM model and 

the actual curves corresponding to two disturbances are 

illustrated in Figs. 9-11. In Figs. 9 and 11, the black curve is an 

actual value in terminal bus 50 and the red corresponds to 

estimated values by least squares fitting based on GDEM. In 

Fig. 9, the blue line is Ir when the regional power grid 

equivalent is represented by the aggregated generator. In the Fig. 

9, the fitted GDEM is more accurate than the model represented 

by the equivalent aggregated generator. 

It is possible that the proposed GDEM linearization would 

limit its application to a more localized section of the power 

system operating point. In order to demonstrate the impact of 

linearization, we have made a comparison of GDEM with an 

original nonlinear model and the corresponding results are 

shown here. In Fig. 10, the blue line is Ir when the regional 

power grid equivalent is represented by the original nonlinear 

model. In Fig. 10, the fitted GDEM is close to the model 

represented by the original nonlinear model and the actual value 

of Ir. 

 

 
Fig.  9. Dynamic response of Ir and Ij with disturbance 1 
 

 

 
Fig.  10. Dynamic response of Ir and Ij with disturbance 2 

 

 
Fig.  11. Dynamic response of Ir and Ij with disturbance 3 

In Case 2, GDEM is used to derive the model of the regional 

power grid with relatively complex components. In Fig. 11, Ir 

according to the least square fitting curves for representing 

GDEM cannot fit the actual Ir well when the regional power 

gird results in a 30% voltage dip in the regional power grid 

operating point. However, simulations and verifications in Case 

2 demonstrate that GDEM can be used for the regional power 

grid representation when the disturbance results in a less than 

30% voltage dip (which essentially covers the majority of 

regional power grid disturbances). 

The root mean square error (RMSE) is applied to calculated 

the difference between actual and least square fitting curves as 

presented in Table V. The parameters with disturbance 1 are 

used in curve fitting with disturbance 2 and disturbance 3 and 

vice versa to verify the correctness of the model for mutual-

fitting RMSE are listed in Table VI. In Figs. 9-11, the fitted 

curves using GDEM are approximately the same as the actual 

curves representing subtle differences in enlarged spots with the 

small RMSE listed in Table V. The mutual-fitting RMSE of Ir 
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and Ij is small enough so that the validity and adaptability of the 

proposed GDEM for the regional power grid are verified. 

TABLE V 
RMSE FOR DISTURBED CURVES 

Voltage 
dip 

RMSE 

Ir Ij 

3% 3.16e-4 3.69e-4 

20% 5.06e-4 5.94e-4 

30% 2.03e-3 8.87e-4 

TABLE VI 

MUTUAL-FITTING RMSE FOR DISTURBED CURVES 

Voltage 

Dip 

RMSE of Ir RMSE of Ij 

3% 20% 30% 3% 20% 30% 

3% 3.16e-4 5.62e-4 2.25e-3 3.69e-4 1.33e-3 6.02e-4 

20% 7.84e-4 5.06e-4 1.01e-3 4.48e-4 8.86e-4 6.47e-4 

30% 4.05e-4 1.63e-3 2.03e-3 1.12e-3 3.84e-4 8.87e-4 

In this case, we made a simulation to consider voltage phase 

angle variation. The generator located at BUS4 is chosen as a 

study object with parameters given in Table VII. The same 

single-phase-to-ground fault is applied at t=1s to the 

transmission line located between BUS16 and BUS19 and the 

fault is cleared at t=1.2s with a 20% voltage dip. The least 

square fitting results are shown in Fig. 12 for the real part of the 

generator current at terminal Bus 4, where the black curve Igr-

actual is the actual values of Igr, the blue curve Igr’ and the red 

curve Igr are with and without voltage phase angle variations 

which are estimated values by least squares fitting based on (11) 

and (19), respectively. 

TABLE VII 

PARAMETERS OF SYNCHRONOUS GENERATOR LOCATED AT BUS4 

Xd Xd′ Xd″ Xq Xq′ Xq″ 

1.81 0.284 0.183 1.81 1.81 0.183 

Tj Td0′ Tq0′ Td0″ Tq0″ D 

66.672 6.2 0.192 9999 1.89 0 

0 2 4 6 8 10
t (s)

5.86

5.88

5.9

5.92

5.94

Ig
r

 (p
.u

.)

Igr-actual

Igr

Igr'

 
Fig.  12. Comparison of Igr-actual, Igr, Igr’ 

In Fig. 12, the RMSE of Igr-actual with Igr and Igr’ are 

1.15e-3 and 3.15e-3, respectively. Accordingly, the fitting 

accuracy in the simulation is not improved when the bus voltage 

phase angle is considered. Furthermore, the number of 

parameters would be increased when the variations in bus 

voltage phase angle are explicitly expressed in (7). 

Correspondingly, the variations are ignored in our study in 

order to facilitate the derivation and the simulation of the 

proposed model. 

Case 3: A regional power grid of Central China 

In Cases 1 and 2, we make a GDEM verification in which we 

apply GDEM to a regional power grid of central China (see Fig. 

13). On 03-08-2016, a single-phase-to-ground fault occurred in 

the 500Kv line between buses 12 and 19. The fault 

measurement (terminal voltage, terminal active and reactive 

power) of the regional power grid are provided by phase 

measurement units (PMUs). 
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500kV Switch Station

Hydro Power Plant

1000kV Substation

220kV Substation

1000kV, 500kV,220kV Transfer Line  

Fig.  13. Topology of the regional power grid of central China 

Here are steps to verify the GDEM in the case study, in which 

we have made a comparison of actual fault measurements and 

those obtained through the GDEM application. 

1) Collect the steady state PMU measurements of the regional 

power grid. 

2) Use the steady state measurement values to estimate the 

GDEM parameters (see Table VIII) by least square fitting 

method. 

3) Use the voltage dip fault values in the regional power grid 

measured by PMUs and apply the GDEM obtained in Step 2 to 

calculate the dynamic response of Ir and Ij. 

4) Compare the PMU fault measurements with the GDEM 

values. 

In Table VIII, we also find that the sum of output coefficients 

is approximately equal to 1, and the sum of input coefficients is 

approximately equal to 0 in the regional power grid of Central 

China, which provide a theoretical basis for validating the 

corresponding GDEM parameters. The RMSE of Ir and Ij in 

Case 3 are 4.69e-3 and 9.48e-3, respectively, which 

demonstrate that the dynamic response of Ir and Ij obtained 

through GDEM in Step 2 are almost the same as those of actual 

PMU measurements in a certain stable range. The Case of the 

regional power grid of central China has exhibited and verified 

the application of GDEM. 

TABLE VIII 

PARAMETERS IN CASE 3 

Parameter Value Relationship 

1 0.9423 

1+2+31 2 -0.062 

3 0.0354 

4 -0.1984 

4+5+6+70 
5 0.347 

6
 

-0.2522
 

7 0.1134 

8 1.0957 

8+9+101 9 -0.1624 

10 -0.0297 

11 -2.4385 

11+12+13+140 
12 2.2912 

13 -0.4643 

14 0.2745 

In Step 3, voltage dip occurs in the regional power grid of 

central China as depicted in Fig. 14. The corresponding 

dynamic response of Ir and Ij are depicted in Figs. 15 and 16. 
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Figs. 14-16 show that actual PMU measurements included 

some ripples around the steady state value which are from 

power electronic devices and electromagnetic transient 

properties. The proposed power grid has a self-healing 

capability which allows voltages and active and reactive power 

in the regional power grid of central China to recover its steady 

state quickly when the single-phase-to-ground fault occurs. 

Other potential applications of GDEM indicate that GDEM 

is not only conducive to the assembly of regional power system 

models for real-time analyses that guide the secure operation of 

large scale power systems but could also be used for the 

equivalent modeling of a host of distributed AC/DC microgrids 

and the generalized load modeling and simulation in large-scale 

power systems. Some of these topics will be analyzed further in 

our future studies. 
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Fig.  14.  Voltage dip in the regional power grid of central China 
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Fig.  15.  Dynamic response of Ir in the regional power grid of central China 
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Fig.  16.  Dynamic response of Ij in regional power grid of central China 

VI. CONCLUSION 

In this paper, a GDEM is developed for regional power grids 

which encompasses the fundamental models of synchronous 

generators and composite loads. The inherent relationships 

among GDEM coefficients in a discrete-time models are 

introduced which are linked with coefficients associated with 

electric power components. As shown in case studies, using the 

GDEM coefficients produce current trajectories that are very 

similar to the actual power system cases. Simulation results also 

validate the relationships among coefficients in the proposed 

GDEM for the regional power grids. The case study pertaining 

to the regional power grid of central China verified the 

application of GDEM. 
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APPENDICES 

A. Specific parameters of (7) and (8) 
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B. Specific parameters of (9) and (10) 
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C. Specific parameters of (20) and (21) 
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