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The simplified topology of a regional power grid in China is
shown in Fig. 1. This system is a high-penetrated renewable
power system. The capacity of conventional thermal plants,
hydro plants, and RES plants is shown in Table I. The scenario
tree is constructed by using the Latin Hypercube Sampling
method. Fig. 2 plots the forecasted RES output and gross load
profiles of the regional power grid. The maximum and mini-
mum load demands are 95,000 MW and 83,500 MW.

The parameters of the adding VESs are listed in Table I1.
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Fig. 1 Simplified topology of a regional power grid in China.

TABLE Il PARAMETERS OF THE VES

g Bus Pood Prn (MW) APIN™"
1 5 1200/600 300
2 16 2400/1200 600
3 24 2400/1200 600
4 39 1200/600 300
5 48 1920/960 480
6 140 2400/1200 600
7 168 900/450 225
8 169 2400/1200 600
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Fig. 2 (a) The forecasted RES output and (b) Gross load of the regional
power grid
TABLE |. CAPACITY OF DIFFERENT TYPES OF UNITS (MW)
Units Thermal Hydro RES Total
Capacity(MW) 102643 31323 60738 194704

A. Training Procedure

In the related literature, the above problem is usually solved
by gradient-descend type algorithms, while the parameter é: is
regarded as the variable. The advantage of gradient-descend
type algorithms is that they do not require any extra information
in addition to the input and output values of the function. In our
problem, V/ (as1) is convex, and the sub-gradient of V" (at1) is
derived by solving the linear programming. Thus, the problem
can be solved more efficiently with the above information. By
regarding 6({64r=1,..., N;}) as constant, the optimality con-
dition of (37) in the paper is stated as,
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Due to the convexity of V" (as1), we have
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Combining (1) and (2), U7 (at1; 6) is stated as follows,
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dient of the cut. SDDPIL is a model-based reinforcement
learning algorithm since the environment model p(st1|st, az) is
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intercept of the cut and ﬁ;

knownas p(&,_, |¢, ). Itisadouble-pass reinforcement learning

algorithm consisting of a forward pass and a backward pass.
Accordingly, the detailed training procedure is stated as fol-
lows.
1) Forward Pass

The forward pass will solve the Bellman optimality equation

by outer approximating the expected cost-to-go function V.(as)
with piecewise linear functions at each stage. The dynamic
programming equation for t=1, 2,..., T'is stated as follows
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where U7, is the piecewise linear approximations of V/i(as).
The detailed formulation is stated as follows,
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where g/, is the intercept of cut e; f;, , is the gradient of cut

e; Ew1 1S the set of the cuts in stage ¢+1.

The task of the forward pass is to generate trajectories for
updating 0%, in the backward pass. The forward pass uses a
Monte Carlo sampling technique to generate K scenarios
(gl,...,gs,...,GK:) from the scenario tree. Then (5) will be solved on
the /C scenarios from ¢ =1, 2,..., T to generate K trajectories.
For stage T, we have U%.(ar) = 0.

2) Backward Pass

The task of the backward pass is to generate supporting hy-

perplanes to update ;. The backward pass will solve (5) from

t = T'to ¢ = 2 with the trajectories extracted randomly from the
experience replay buffer. After solving (5) for all scenarios at

stage ¢, the dual variables 4 of the constraint A(s:) = A(z,_,,&,)

and the optimal values V,* (st(&, )) are obtained to generate the
cuts, which are added to all sub-problems at stage ¢-1 to update

7. The gradient iy and intercept g/ of cut e are updated as
follows:
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The cuts will update the 27 to improve the approximation of

the expected cost-to-go function iteratively. At the early itera-
tions of training, the expert performance data are better than the
trajectories generated in the forward pass. The expert perfor-
mance data are more likely to be chosen by giving a larger
probability. After several iterations, the expert performance
data will be given the same probability as the trajectories gen-
erated in the forward pass. This means that in later iterations,
the forward passing trajectory will be treated as important as
expert performances.

B. Convergence Criterion of SDDPIL

Different from model-free methods, SDDPIL has an explicit
convergence criterion which is guaranteed by the probability
theory. The SDDPIL provides the lower bound (LB) by solving
the first stage problem.
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The upper bound (UB) is provided by calculating the ex-
pectation of the return of several episodes. The UB is a confi-
dence interval for the random sampling.
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where zy is the (1 — a) quantile of the standard normal distri-
bution. Finally, the flowchart of the SDDPIL algorithm is
shown in Table I.



