APPENDIX
A. Final formulation of the Planning Problem

After linearization, the objective of the planning problem is
stated in (1), which is subject to investment (2)-(4) and
operation (5)-(43) constraints.
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B. Application of Benders Decomposition
The proposed planning problem is restated as
minC'x+ > P(s)D"y,
st. Ex+Fy +Gz, >h; (44)

Ax>b;x>0,y, >0,z €(0,1);

where X denotes fn at the investment stage, ys represents
continuous variables in the operation stage; zs includes binary
variables introduced by the linearization in the operation stage;
P(s) is the expectation, and s denotes a scenario; Ax= b refers
to the investment constraint (2)-(4); Ex+Fys+Gzs> h collects
all operation constraints (5)-(43).

Although this planning problem can be solved as one large-
scale linear programing problem, the computation burden will
be significant when a large number of scenarios are involved.
Here, we adopt the Benders decomposition to decompose the
original large-scale planning problem into a master investment
problem and two sets of operation subproblems.

1) Master problem

The formulation of the master problem with Benders cuts
which are generated iteratively from the subproblem is stated in
(45). At each iteration n, we solve the master problem to obtain
the lower bound LB,, which is equal to the optimal objective
value of (45).

minC"x+0
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2) Feasible subproblem

The feasible subproblem will check whether the investment
decision obtained in the master problem is feasible when
applied to the operation stage. For each scenario, given the

(4%)



optimal x” value of the master problem, the feasible subproblem
is stated in (46). Note that this subproblem is non-convex that
cannot directly provide the Benders cut for the master problem
(45). The modified feasible subproblem is reformulated as in
(47) after solving (46) to obtain the binary z,; and fixing its
value in (51).
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If the objective value of (47) is not zero, a feasibility cut (48)
is generated and added to the master problem, where v, is the
optimal dual solution to (47).
023 p(s)(h-Ex-Gz,) v (48)
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3) Optimal subproblem

If the objective value of (47) is equal to zero, the optimal
subproblem is stated as (49).
minD"y,
st. EX' +Fy,+Gz, >h,y >0 (49)
The same method used in solving the feasible problem is
adopted to solve the optimal problem. Given the optimal primal
solution y. and the optimal dual solution u; of (50), the
upper bound is updated as (50).
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If |\UB,-LB,| < & cannot be satisfied, the optimal cut will
be generated and added to (45) at the next iteration; otherwise
the process will be terminated.
BZZp(s)(h-Ex-GZZ)r u; (51)
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C. Proposed Solution Procedure

Using the stated strategy for the planning problem, the solution
stapes are itemized as follows.
Step 1: Initialize all parameter values
Step 2: Solve the initial master problem

minC"x, s.t. Ax>b,x >0. Obtain the optimal value x*
and state the initial solution w*. LB=pu".

Step 3: For each scenario, solve the feasible subproblem.

3.1 Solve (45) to obtain z;, then solve (46) to obtain v;. If
the objective of (47) is equal to zero, go to step 4. Otherwise,
go to step 3.2

3.2 Generate the feasibility cut (48), add it to the master
problem (45), and go to step 4.

Step 4: for each scenario, solve the optimal subproblem.

4.1 Solve (49) to obtain z;, y and uy.

4.2 Update the upper bound using (50). If |UB,-LB,| < &,
stop the iterations; otherwise go to step 4.3.

4.3 Generate the optimality cut (51) to (45). Go to step 5 and
repeat the process.

Step 5 Solve the master problem (45) to obtain the updated x*
and LB, then repeat step 3.



