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APPENDIX 

A. Final formulation of the Planning Problem  

After linearization, the objective of the planning problem is 

stated in (1), which is subject to investment (2)-(4) and 

operation (5)-(43) constraints. 
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B. Application of Benders Decomposition 

The proposed planning problem is restated as 
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where x denotes fN at the investment stage, ys represents 

continuous variables in the operation stage; zs includes binary 

variables introduced by the linearization in the operation stage; 

P(s) is the expectation, and s denotes a scenario; Ax≥ b refers 

to the investment constraint (2)-(4); Ex+Fys+Gzs≥ h collects 

all operation constraints (5)-(43). 

Although this planning problem can be solved as one large-

scale linear programing problem, the computation burden will 

be significant when a large number of scenarios are involved. 

Here, we adopt the Benders decomposition to decompose the 

original large-scale planning problem into a master investment 

problem and two sets of operation subproblems.  

1) Master problem 

The formulation of the master problem with Benders cuts 

which are generated iteratively from the subproblem is stated in 

(45). At each iteration n, we solve the master problem to obtain 

the lower bound LBn, which is equal to the optimal objective 

value of (45). 
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2) Feasible subproblem 

The feasible subproblem will check whether the investment 

decision obtained in the master problem is feasible when 

applied to the operation stage. For each scenario, given the 
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optimal x* value of the master problem, the feasible subproblem 

is stated in (46). Note that this subproblem is non-convex that 

cannot directly provide the Benders cut for the master problem 

(45). The modified feasible subproblem is reformulated as in 

(47) after solving (46) to obtain the binary zs
* and fixing its 

value in (51). 
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If the objective value of (47) is not zero, a feasibility cut (48) 

is generated and added to the master problem, where vs
* is the 

optimal dual solution to (47). 
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3) Optimal subproblem 

If the objective value of (47) is equal to zero, the optimal 

subproblem is stated as (49). 
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The same method used in solving the feasible problem is 

adopted to solve the optimal problem. Given the optimal primal 

solution y
s
*  and the optimal dual solution us

*  of (50), the 

upper bound is updated as (50). 
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If |UBn-LBn| < 𝜀 cannot be satisfied, the optimal cut will 

be generated and added to (45) at the next iteration; otherwise 

the process will be terminated. 
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C. Proposed Solution Procedure 

Using the stated strategy for the planning problem, the solution 

stapes are itemized as follows. 

Step 1: Initialize all parameter values  

Step 2: Solve the initial master problem 

min ,  s.t. , 0.T b C x Ax x   Obtain the optimal value x* 

and state the initial solution 𝝁∗. LB=𝝁∗. 

Step 3: For each scenario, solve the feasible subproblem. 

3.1 Solve (45) to obtain zs
*, then solve (46) to obtain vs

*. If 

the objective of (47) is equal to zero, go to step 4. Otherwise, 

go to step 3.2 

3.2 Generate the feasibility cut (48), add it to the master 

problem (45), and go to step 4. 

Step 4: for each scenario, solve the optimal subproblem.  

4.1 Solve (49) to obtain zs
*,  y

s
* and us

*. 

4.2 Update the upper bound using (50). If |UBn-LBn| < 𝜀, 

stop the iterations; otherwise go to step 4.3. 

4.3 Generate the optimality cut (51) to (45). Go to step 5 and 

repeat the process. 

Step 5 Solve the master problem (45) to obtain the updated x* 

and LB, then repeat step 3. 

 


